摘要:本文旨在解决固态载体用于氢存储的剥削,并通过对可用的整合系统的广泛审查以及社会方面的广泛概述,通过从性别角度对连接的影响进行初步概述。至于技术角度,用于用于各种应用的固态氢存储的载体可以分为两类:金属和复杂的氢化物。的晶体结构和相应的氢吸附性能。氢吸附热力学的基本原理证据证明了反应焓的关键作用,这决定了工作条件(即温度和压力)。此外,它会在吸收氢气期间从水箱中去除的热量,并在氢解吸过程中输送到水箱。对于接近环境的工作条件(即室温和1-10氢)的氢吸附反应焓的合适值接近30 kj·mol H2 - 1。氢吸附反应的动力学与载体的微观结构和形态(即散粉或颗粒)密切相关。通常,氢吸附反应的动力学相当快,储罐的热管理是过程的速率确定步骤。在社会领域中,已经引起了人们的注意,以解决性别观点与增强与氢相关的储能系统之间的不充分的关系。就社会的观点而言,本文认为,由于它是通过对其他可再生创新技术的剥削而发生的,因此需要对与这些过程相关的社会因素进行广泛考虑以达到两个目标:以评估特定的创新可能在社会上对社会的社会经验产生积极或负面影响的程度,并从社会经验中,以及从社会经验中探索的社会,以及从社会经验中探索的社会,以及从促进创新本身扩散的组成部分和动态。这两者都考虑到妇女在触发基于氢的储存量作为实验者和启动子的剥削中的作用,以及这项创新在当前条件,工作和日常生活中的相互缠绕的影响。
上下文。高度不饱和的碳链,包括波利尼斯。随着金牛座分子云-1(TMC-1)的Quijote调查的成功,该社区在检测到的碳链数量中看到了“繁荣”。另一方面,罗塞塔(Rosetta)任务揭示了完全饱和的碳氢化合物,C 3 H 8,C 4 H 10,C 5 H 12,(在特定条件下)C 6 H 14与C 7 H 16的C 6 H 14,从Comet 67p/Churyumov-Gerasimenko中。后两者的检测归因于尘埃泛滥的事件。同样,Hayabusa2 Mission从小行星Ryugu返回的样品的分析表明,Ryugu有机物中存在长期饱和脂肪族链。目标。在类似于分子云的条件下,不饱和碳链的表面化学性质可以在这些独立观察结果之间提供可观的联系。但是,仍缺乏基于实验室的研究来验证这种化学反应。在本研究中,我们的目标是通过在10 K.方法下超高真空条件下的C 2 N H 2(N> 1)Polyynes的表面氢化来验证完全饱和的烃的形成。我们进行了两步实验技术。首先,紫外线(≥121nm)辐照C 2 H 2冰的薄层,以将C 2 H 2的部分转化为较大的Polyynes:C 4 H 2和C 6 H 2。之后,将获得的光处理冰暴露于H原子中,以验证各种饱和烃的形成。结果。除了先前研究的C 2 H 6外,我们的研究证实了较大的烷烃的形成,包括C 4 H 10和(暂时)C 6 H 14。对获得的动力学数据的定性分析表明,鉴于表面温度为10 K,HCCH和HCCCCH三键的氢化以可比的速率进行。这可能发生在乌云阶段的典型时间表上。还提出了通过N-和O-O-bearenty Polyynes的表面氢化形成其他各种脂肪族有机化合物的一般途径。我们还讨论了天文学的含义以及与JWST鉴定烷烃的可能性。
将氢(H 2)存储为能量载体,需要开发用于提高传统储存溶液的效率和安全性,例如压缩气体(350-700 bar)和低温液体(20-30 K)。[1]固态氢存储是开发的一种替代方法,可以通过金属 - 水流中的化学键或通过物理吸附(物理吸附)到达多孔材料表面的物理吸附(物理吸附),以达到涉及较低储存压力的技术储存密度。[2]在固态方法中,物理吸附显示了更快的动力学,用于充电和放电和完全可逆性。[3,4]使用吸附剂进行氢存储需要低温温度(冷冻吸附),通常在液氮的沸点周围,即77 K,以实现与高压或液态氢罐可比的实用重量和大量能力。[5–11]
将氢(H 2)存储为能量载体,需要开发用于提高传统储存溶液的效率和安全性,例如压缩气体(350-700 bar)和低温液体(20-30 K)。[1]固态氢存储是开发的一种替代方法,可以通过金属 - 水流中的化学键或通过物理吸附(物理吸附)到达多孔材料表面的物理吸附(物理吸附),以达到涉及较低储存压力的技术储存密度。[2]在固态方法中,物理吸附显示了更快的动力学,用于充电和放电和完全可逆性。[3,4]使用吸附剂进行氢存储需要低温温度(冷冻吸附),通常在液氮的沸点周围,即77 K,以实现与高压或液态氢罐可比的实用重量和大量能力。[5–11]
储能系统是将可再生能源有效整合到网格中以实现净零能源系统所必需的。在700 bar处压缩的氢是关键的储能技术之一。这项研究评估了固态氢储存的有效性,尤其是多孔材料中的物理吸附,以通过降低操作储罐压力来提高室温下的存储性能和安全性。我们以最大的储罐压力和往返储存效率来动态模型整个存储系统,将吸附材料与传统压缩进行比较。检查了不同循环频率和放电持续时间的不同能量系统的应用。结果表明,与压缩氢相比,基于多孔材料的系统对长期储能服务具有更高的效率。值得注意的是,大量密度在存储性能中起关键作用。例如,与压缩氢系统相比,散装密度为500 kg/m 3的IRMOF-1显示了70%的压力。相比之下,当其整体密度降低到130 kg/m 3时,最大储罐压力甚至比压缩罐高30%。我们强调需要进行全面的材料表征,从而强调了诸如大量密度在最大储罐压力和效率方面确定最大氢吸附物质的重要性。作为一般结果,最佳性能材料取决于特定的目标或系统要求,例如压力,数量,成本或重量。
o盐洞穴是一种成熟的技术,可以以相对较低的成本存储大量氢。但是,盐洞穴以前尚未像未来能量系统中氢气所需的灵活使用。此外,苏格兰没有陆上盐矿床,需要依靠邻国来利用这项技术。o耗尽的气场对于快速和成本效益的高存储能力可能很重要。由于地球化学和微生物因子的可变性,每个位点必须逐案审查,这可能是一个漫长的过程。尽管有一种一般的学术观点,即他们每年只能经过几个周期来满足季节性存储需求,但我们的利益相关者在大规模天然气存储中的建模和经验表明,它们可以更灵活地使用,潜在地支持每月或每周的存储。由于米德兰山谷(Midland Valley)广泛的沉积沉积物,其他多孔媒体(例如含水层)在苏格兰具有潜力。在地质学上不理理解的情况下,它们的技术准备也比任何其他形式的地质存储都较低。o在短期内在苏格兰具有很高的潜力。由于它们没有地质限制,并且很容易缩放,因此它们可以为分散的地点和岛屿社区提供具有成本效益的技术,同时广泛的氢管道基础设施在线。o液体氢和氢载体可以在解锁苏格兰的氢出口电位方面发挥作用。但是,它们的效率不如其他存储选择效率,因此在削减削减成本并在国际氢市场发展之前为能源系统提供灵活性的作用有限。o金属氢化物是一种固态氢的形式,可以比加压或液体氢以更高的能量密度存储氢,并且可以在环境温度和压力下存储。但是,这些技术的准备就绪低于压缩气态存储,转化率是强化的。