上下文。高度不饱和的碳链,包括波利尼斯。随着金牛座分子云-1(TMC-1)的Quijote调查的成功,该社区在检测到的碳链数量中看到了“繁荣”。另一方面,罗塞塔(Rosetta)任务揭示了完全饱和的碳氢化合物,C 3 H 8,C 4 H 10,C 5 H 12,(在特定条件下)C 6 H 14与C 7 H 16的C 6 H 14,从Comet 67p/Churyumov-Gerasimenko中。后两者的检测归因于尘埃泛滥的事件。同样,Hayabusa2 Mission从小行星Ryugu返回的样品的分析表明,Ryugu有机物中存在长期饱和脂肪族链。目标。在类似于分子云的条件下,不饱和碳链的表面化学性质可以在这些独立观察结果之间提供可观的联系。但是,仍缺乏基于实验室的研究来验证这种化学反应。在本研究中,我们的目标是通过在10 K.方法下超高真空条件下的C 2 N H 2(N> 1)Polyynes的表面氢化来验证完全饱和的烃的形成。我们进行了两步实验技术。首先,紫外线(≥121nm)辐照C 2 H 2冰的薄层,以将C 2 H 2的部分转化为较大的Polyynes:C 4 H 2和C 6 H 2。之后,将获得的光处理冰暴露于H原子中,以验证各种饱和烃的形成。结果。除了先前研究的C 2 H 6外,我们的研究证实了较大的烷烃的形成,包括C 4 H 10和(暂时)C 6 H 14。对获得的动力学数据的定性分析表明,鉴于表面温度为10 K,HCCH和HCCCCH三键的氢化以可比的速率进行。这可能发生在乌云阶段的典型时间表上。还提出了通过N-和O-O-bearenty Polyynes的表面氢化形成其他各种脂肪族有机化合物的一般途径。我们还讨论了天文学的含义以及与JWST鉴定烷烃的可能性。
摘要:本文旨在解决固态载体用于氢存储的剥削,并通过对可用的整合系统的广泛审查以及社会方面的广泛概述,通过从性别角度对连接的影响进行初步概述。至于技术角度,用于用于各种应用的固态氢存储的载体可以分为两类:金属和复杂的氢化物。的晶体结构和相应的氢吸附性能。氢吸附热力学的基本原理证据证明了反应焓的关键作用,这决定了工作条件(即温度和压力)。此外,它会在吸收氢气期间从水箱中去除的热量,并在氢解吸过程中输送到水箱。对于接近环境的工作条件(即室温和1-10氢)的氢吸附反应焓的合适值接近30 kj·mol H2 - 1。氢吸附反应的动力学与载体的微观结构和形态(即散粉或颗粒)密切相关。通常,氢吸附反应的动力学相当快,储罐的热管理是过程的速率确定步骤。在社会领域中,已经引起了人们的注意,以解决性别观点与增强与氢相关的储能系统之间的不充分的关系。就社会的观点而言,本文认为,由于它是通过对其他可再生创新技术的剥削而发生的,因此需要对与这些过程相关的社会因素进行广泛考虑以达到两个目标:以评估特定的创新可能在社会上对社会的社会经验产生积极或负面影响的程度,并从社会经验中,以及从社会经验中探索的社会,以及从社会经验中探索的社会,以及从促进创新本身扩散的组成部分和动态。这两者都考虑到妇女在触发基于氢的储存量作为实验者和启动子的剥削中的作用,以及这项创新在当前条件,工作和日常生活中的相互缠绕的影响。