摘要。对 5754、6061 和 7075 铝合金进行了 RCS 工艺提高机械强度的潜力评估,这三种铝合金呈现出与各自合金元素相关的不同硬化机制。这项工作比较了不同合金通过 RCS 处理后织构和机械性能的演变。通过显微硬度测量、不同温度和应变速率下的拉伸试验来评估机械性能,以评估应变速率敏感性。结果表明,经过两次 RCS 处理后,6061 和 5754 合金在 300°C 下表现出相对较高的应变速率敏感性。此外,5754、6061 和 7075 合金的硬度分别增加了 27%、22%、15%。显示出由于不同的硬化机制而提高机械阻力的潜力。此外,通过 X 射线衍射获得极图并计算其取向分布函数来表征晶体织构。结果表明,三种铝合金表现出相同的趋势,即初始织构组分得以保留,但织构化体积有所减少。
摘要 高熵 (HE) 超高温陶瓷有机会为未来的应用铺平道路,推动能源转换和极端环境屏蔽领域的技术优势。其中,HE 二硼化物因其固有的各向异性层状结构和耐受超高温的能力而脱颖而出。在此,我们采用原位高分辨率同步加速器衍射对大量多组分组合物进行研究,其中包含四到七种过渡金属,目的是了解不同组分或合成过程后的热晶格膨胀。结果,我们能够根据金属的组合将平均热膨胀 (TE) 从 1.3 × 10 − 6 控制到 6.9 × 10 − 6 K − 1,平面内与平面外 TE 比的变化范围为 1.5 到 2.8。
HER 动力学缓慢,而 Ni 则具有一些积极特性,例如高导电性、稳定性和相对较高的地球丰度。[1,3] 自 20 世纪 60 年代以来,人们做出了巨大努力来提高 Ni 基电催化剂的催化活性,采用了各种有希望的候选材料,例如镍的氢氧化物、二硫属元素化物、磷化物、碳化物等。[1,4] 通常,可以通过调整催化剂的形貌(例如,生产纳米线、纳米片、纳米颗粒等)来增加活性表面积,以及改善可用活性位点的固有活性(例如,通过合金化、掺杂、缺陷工程等)来增强催化活性。对于镍而言,形成合金是改变形貌和内在活性的常用策略,其中 NiCo、NiFe 和 NiMo 混合物已被鉴定为很有前途的 HER 电催化剂。[2b,4,5] 多组分合金的使用是二元体系的自然延伸,其中已经研究了三元合金,例如 CuAlNi、NiMoFe 和 NiMoW[2b,4],尽管每种金属的作用尚不完全清楚。在常见的 Ni 合金中,NiFe 混合物通常表现出更好的催化性能,特别是,在这些合金中添加 Mo 可以降低起始电位,这是由于有利的氢-金属相互作用和增加活性位点的数量。[4,6] 因此,NiFeMo 合金是最有前途的 HER 电催化剂之一,主要通过热液工艺[7]或电沉积生产。 [8] 合成技术的选择对催化剂的形貌有显著的影响,一般来说,不同的合成技术具有不同的最佳 Ni:Fe:Mo 金属比。此外,这些技术的特点是产量低、材料负载有限,使其在大规模应用中的使用变得复杂。因此,寻找一种能够生产三金属合金的可扩展技术对于氢经济的发展至关重要。溶液前体等离子喷涂 (SPPS) 是一种很有前途的技术,它有可能生产出各种具有适合作为电催化剂的特性的涂层 [9]。因此,在本研究中,我们表明,在等离子喷涂过程中使用含有 Ni、Fe 和 Mo 金属盐的液体前体
在电磁干扰屏蔽、天线和电化学能存储与转换电极等应用中,MXene 薄膜需要具有高电导率。由于采用基于酸蚀的合成方法,因此很难分解化学成分和薄片尺寸等因素对电阻率的相对重要性。为了了解内在和外在因素对宏观电子传输特性的贡献,对 Ti y Nb 2- y CT x 系统中的固溶体进行了控制成分和结构参数的系统研究。特别是,我们研究了金属(M)位成分、薄片尺寸和 d 间距对宏观传输的不同作用。硬 x 射线光电子能谱和光谱椭圆偏振法揭示了 M 位合金化引起的电子结构变化。与光谱结果一致,低温和室温电导率以及有效载流子迁移率与 Ti 含量相关,而薄片尺寸和 d 间距的影响在低温传输中最为突出。该结果为设计和制造具有广泛电导率的 MXene 提供了指导。