尽管过去几十年来信息技术、微电子、人工传感和信息处理领域取得了令人瞩目的进步,但实际系统在处理现实任务时仍然远不如生物系统有效。这种分析导致了神经形态工程领域的出现,特别是基于事件的传感,旨在构建基于硅的传感和计算设备,模仿生物系统获取和处理信息的方式。与传统图像传感器不同,EB 传感器不对所有像素使用通用采样率(称为帧速率),而是每个像素连续跟踪入射光量并在变化时异步采样信号。这种获取稀疏数据的高效方式、高时间分辨率以及对不受控制的照明条件的鲁棒性(具有高动态范围)是 EB 传感过程的特点,使 EB 成像对众多应用具有吸引力,例如工业自动化、过程监控、监控、物联网、AR/VR、汽车和移动环境。
摘要 — 在机器对机器 (M2M) 传输环境中,非常需要使用有损压缩来减少传输的信息量。然而,常用的图像压缩方法是为人类感知而设计的,而不是为人工智能 (AI) 算法的性能而设计的。众所周知,这些压缩失真会影响许多基于深度学习的架构在多个计算机视觉任务上的表现。在本文中,我们专注于分类任务,并提出了一种名为专家训练的新方法,以增强卷积神经网络 (CNN) 对压缩失真的弹性。我们在 ImageNet 数据集上使用 MnasNet 和 ResNet50 架构验证了我们的方法,以抵抗三种常用方法 (JPEG、J2K 和 BPG) 引入的图像压缩失真。结果表明,使用所提出的专家训练方法,这两种架构对测试的编码伪影具有更好的鲁棒性。我们的代码可在 https://github.com/albmarie/expert training 上公开获取。索引术语 — 人工智能 (AI)、图像编码、机器对机器 (M2M)
将使用双刺激连续质量量表 (DSCQS) 方法,受试者并排观看原始图像和受损解码图像,并在连续量表中对两者进行评分。该量表分为五个相等的长度,与正常的 ITU-R 五点质量量表相对应,即优秀、良好、一般、较差和差。该方法需要评估每个测试图像的原始版本和受损版本。观察者不知道哪一个是参考图像,并且参考图像的位置以伪随机顺序更改。受试者通过在垂直刻度上插入标记来评估原始图像和解码图像的整体质量。垂直刻度成对打印,以适应每个测试图片的双重呈现。
在上面的屏幕中,我们可以看到从水印图像中提取的二进制值,然后单击“用原始图像编码加密的水印对”按钮隐藏原始图像中的加密水印
基于学习的图像编码解决方案已经证明,它们可以实现比现有传统解决方案更好的压缩效率,即通过利用先进的机器学习工具,例如深度神经网络 [1]。具体而言,与 JPEG、JPEG 2000 和 HEVC Intra 相比,事实证明,对于某些目标比特率,基于学习的编码解决方案可以提供更好的感知质量,无论是在适当的感知客观质量指标还是主观评估分数方面 [2]。除了高压缩效率之外,基于学习的图像编码解决方案还可以毫不费力地适应图像处理和计算机视觉任务,而无需完全解码,即无需执行图像重建。这与经典图像编解码器形成对比,后者在图像处理和计算机视觉管道中使用时,需要对压缩比特流执行完全解码以获得基于像素的表示。
量子图像处理是一个研究字段,探讨了量子计算和算法用于图像处理任务(例如图像编码和边缘检测)的使用。尽管经典的边缘检测算法的性能相当出色并且非常有效,但在具有高分辨率图像的大型数据集时,它们的距离越慢。量子计算有望在各个部门提供显着的性能提升和突破。量子Hadamard Edge检测(QHED)算法在恒定的时间复杂性下工作,因此比任何经典算法都快得多。但是,原始QHED算法设计用于量子概率图像编码(QPIE),主要用于二进制图像。本文通过结合编码量子图像(FRQI)的灵活表示和修改的QHED算法来提出新的方案。在这项工作中提出了一种改进的边缘轮廓方法,与传统的QHED算法相比,该工作使对象轮廓输出和更准确的边缘检测。
我将介绍三个互补的开源MATLAB工具箱 - ISETCAM,ISETBIO和ISET3D-启用综合成像系统模拟。这些工具支持从场景到传感器的端到端建模:物理逼真的场景模拟(光谱灯场),多元元素光学和最终图像编码。i将介绍三个关键研究:验证模拟精度,高动态范围成像的CMOS传感器设计的优化以及视网膜编码(生理光学和锥度采样)的建模,以揭示人类视觉分辨率的基本限制。
赫布学习是大脑最成熟的原理之一,它催生了神经组装的理论概念。在此基础上,许多有趣的大脑理论应运而生。Palm 的工作通过二元联想记忆实现了这一概念,该模型不仅具有广泛的认知解释能力,而且还能做出神经科学预测。然而,联想记忆只能与对数稀疏表示一起工作,这使得将该模型应用于真实数据极其困难。我们提出了一个生物学上合理的网络,将图像编码为适合联想记忆的代码。它被组织成专门研究局部接受场的神经元组,并通过竞争方案进行学习。在对两个视觉数据集进行自关联和异关联实验后,我们可以得出结论,我们的网络不仅超越了稀疏编码基线,而且接近使用最佳随机代码实现的性能。
自动勾勒出脑磁共振图像 (MRI) 中异常的能力对计算机辅助诊断至关重要。无监督异常检测方法主要通过学习健康图像的分布并将异常组织识别为异常值来工作。在本文中,我们提出了一种切片检测方法,该方法首先在两个不同的数据集上训练一对自动编码器,一个数据集包含健康个体,另一个数据集包含正常和肿瘤组织的图像。接下来,它根据图像编码与仅对健康图像进行训练的自动编码器获得的重建编码之间的潜在空间距离对切片进行分类。我们通过对 HCP 和 BRATS-2015 数据集进行的一系列初步实验验证了我们的方法,结果表明所提出的方法能够将脑部 MRI 分为健康和不健康。
Computational Biomechanics M 2L/1T 5 Computed Tomography I - Methods on CT M 2L/1T 5 Computer Assisted Surgery M 2L/2S 6 Control of AC Drives M 2 L/1T 5 Digital Automation Systems M 2L/1T 5 Digital Information Processing M 2L/1T 5 Electromagnetic Compatibility M 2 L/2 T 5 Electromagnetic Field Theory M 2 L/1 T 5 Electronic Circuits M 2 l/1 T 5电子系统级建模M 2L/1T 5有限元方法M 2L/2T 5混合成像M 2L/1S 5图像编码M 2 L/1 T 5介绍组织工程中的介绍M 2L/2T 5深度学习简介M 2L/4T 10