摘要 — 图像融合是将多个输入图像组合成单个输出图像的过程,该输出图像比任何单个输入图像提供的场景描述更能描述场景。为了获得更好的视觉效果,需要对全色和多光谱图像或真实世界图像进行高分辨率图像融合。图像融合有多种方法,一些图像融合技术包括 IHS、PCA、DWT、拉普拉斯金字塔、梯度金字塔、DCT、SF。在许多应用中已经开发了几种数字图像融合算法。图像融合从给定场景的多个图像中提取信息,以获得最终图像,该图像具有更多适合人类视觉感知的信息,并且更适合额外的视觉处理。它还打算回顾图像融合算法的质量评估指标。在像素级、特征级探索灰度图像融合技术,并回顾每种技术的概念、原理、局限性和优势。
多模式图像融合旨在结合不同的模态,以产生保留每种模式的合并特征的融合图像,例如功能亮点和纹理细节。为了利用强大的先验,并应对基于GAN的生成方法的不稳定培训和缺乏解释性等挑战,我们提出了一种基于脱氧扩散概率模型(DDPM)的新型融合算法。在DDPM采样框架下,融合任务是作为条件生成概率提出的,该框架被划分为无条件生成子问题和最大似然子问题。后者以层次的贝叶斯方式进行了模拟,并以潜在变量为单位,并通过期望最大化(EM)算法来推断。通过将推理解决方案集成到扩散采样迭代中,我们的方法可以从源图像中生成具有自然图像生成先验的高质量融合图像,并从源图像中产生交叉模式信息。请注意,我们所需的只是无条件的预训练的生成模型,不需要微调。我们的广泛实验表明,我们的方法产生了有希望的融合会导致红外可见的图像融合和医学图像融合。该代码可在https:// github上找到。com/zhaozixiang1228/mmif-ddfm。
近年来技术飞速发展,医学诊断和治疗需要各种医学成像方法来实现高精度,例如磁共振成像 (MRI)、计算机断层扫描 (CT)、单光子发射计算机断层扫描 (SPECT) 等。这些成像方法通常会提供独特的信息。因此,通常采用一种称为图像融合的后成像方法。这种方法将两幅或多幅图像的信息合成一幅包含所有相关数据的图像。本文提出了一种在 MATLAB 环境中开发的程序和简单的专用图形用户界面 (GUI)。基于不同的小波分解,可以分析应用于脑部 MRI 和 SPECT 医学图像的不同小波图像融合方法。所提出的 GUI 可应用于真实图像的计算机辅助诊断,以使医学诊断更加精确。所提出的 GUI 也适用于研究医学图像融合的工程教育。
光谱图像融合结合了低空间分辨率高光谱(HS)和低光谱 - 分辨率多光谱(MS)图像,以估计高分辨率(HR)光谱图像。尽管基于监督深度学习的最新融合技术显示出令人鼓舞的结果,但这些方法需要大量的培训数据集,涉及昂贵的获取成本和较长的培训时间。相比之下,基于深图像先验(DIP)方法的无监督的HS和MS图像融合为具有不同分布的图像的适应性提供了适应性。但是,现有的无监督方法依赖于线性降解模型的假设,并且需要对这些模型的精确知识才能获得最佳性能。为了克服这些挑战,我们提出了无监督的盲人HS和MS图像融合的中间输出深图像先验(MODIP)。Modip基于DIP模型,并在网络中的中间层产生融合图像。该体系结构包括两个高尺度的卷积发生器,它们从HS和MS输入中重建了HR光谱图像,以及两个网络,这些网络适当地降低了估计的HR图像,以匹配可用的MS和HS数据集,从而学习非线性降解模型。MODIP的网络参数是通过最小化所提出的复合损耗函数的共同和迭代调整的。重要的是,这种方法可以处理降解操作员未知或部分估计的方案。广泛的模拟表明,MODIP的表现优于其他基于模型的图像融合方法。为了评估MODIP的性能,我们在两个模拟光谱图像数据集(Pavia University和Salinas Valley)上测试了Fusion方法,以及通过光学实验室中的测试台实现获得的真实数据集。
相关性模块在电子商务搜索中起着基本作用,因为他们负责根据用户查询从数千个项目中选择相关产品,从而增强用户的体验和效率。传统方法根据产品标题和用户查询来计算相关性得分,但是单独的标题中的信息可能不足以完全删除产品。一种更通用的方法是进一步利用产品图像信息。近年来,视觉语言预训练模型在许多情况下都实现了令人印象深刻的恢复,这些模型将构图的研究利用将文本和vi-sual特征映射到关节嵌入空间中。在电子商务中,一种常见的做法是根据预先训练的模型,使用电子商务数据进一步微调模型。但是,性能是最佳的,因为视觉语言预训练模型缺乏专门为查询设计的一致性。在此过程中,我们提出了Q uery-a an an a an an a a a guage i mage f usion e mbedding,以应对这些挑战(Query-Life)。它利用基于查询的mul-timodal融合来根据产品类型有效地合并图像和标题。在方面,它采用查询感知的模态对准来增强产品的全面表示的准确性。此外,我们设计了Genfilt,它利用大型模型的发电能力过滤出虚假的负样本,并进一步改善模型中对比度学习任务的整体性能。实验表明,查询寿命的表现优于现有基准。我们进行了消融研究和人类评估,以验证查询寿命内每个模块的效率。此外,查询生活已在Miravia搜索1
脑医学图像融合在构建当代图像以增强相互和重复信息以用于诊断目的方面起着重要作用。提出了一种对脑图像使用基于核的图像滤波的新方法。首先,使用双边滤波器生成源图像的高频分量。其次,估计第一幅图像的强度分量。第三,对几个滤波器采用侧窗滤波,包括引导滤波器、梯度引导滤波器和加权引导滤波器。从而最小化第一幅图像的强度分量与第二幅图像的低通滤波器之间的差异。最后,基于三个评估指标对融合结果进行评估,包括标准差(STD)、特征互信息(FMI)、平均梯度(AG)。基于该算法的融合图像包含更多信息、更多细节和更清晰的边缘,有助于更好地诊断。因此,我们基于融合图像的方法能够很好地找到目标体积的位置和状态,从而远离健康部位并确保患者的健康。
摘要 目的 CT 和 MRI 对术前准确评估肿瘤与重要血管、脑组织及颅颌面骨的三维空间位置关系至关重要,探讨基于 CT-MRI 图像融合在颞下窝及颅中窝沟通性肿瘤治疗中术前评估、虚拟手术规划及导航手术的应用价值。方法 回顾性研究 8 例颞下窝-颅中窝沟通性肿瘤患者,将平扫、增强 CT 和 MRI 影像数据导入工作站进行图像融合,依次进行三维图像重建、虚拟手术规划及术中导航。通过对 ICFCT 患者采用 CT-MRI 图像融合导航引导下进行活检或手术后的临床资料进行分析,评估治疗效果。结果 8例患者均获得了高质量的CT-MRI图像融合及三维重建,图像融合结合三维图像重建增强了ICFCT术前评估,并通过虚拟规划提高了手术效果。4例导航引导下穿刺活检均获得了明确的病理诊断。7例导航引导下手术除1例例外,其余患者均实现了肿瘤完整切除。1例复发性脑膜瘤患者术后出现脑脊液漏。结论 CT-MRI图像融合结合计算机辅助导航管理,优化了ICFCT穿刺活检和手术的准确性、安全性及手术效果。
1.引言多光谱图像通常提供互补信息,如可见光波段图像和红外图像(近红外或长波红外)。有强有力的证据表明,融合的多光谱图像提高了解释的可靠性(Rogers & Wood,1990;Essock 等人,2001);而彩色多光谱图像则提高了观察者的表现和反应时间(Toet 等人,1997;Varga,1999;Waxman 等人,1996)。计算机可以自动分析灰度融合图像(用于目标识别);而彩色图像则易于人类用户解释(用于视觉分析)。想象一下,夜间导航任务可以由配备多传感器成像系统的飞机执行。分析组合或合成的多传感器数据将比同时监测多光谱图像(如可见光波段图像(例如,图像增强,ll)、近红外(NlR)图像和红外(lR)图像)更方便、更有效。在本章中,我们将讨论如何使用图像融合和夜视彩色化技术合成多传感器数据,以提高多传感器图像的有效性和实用性。预计这种图像合成方法的成功应用将提高遥感、夜间导航、目标检测和态势感知的性能。这种图像合成方法涉及两种主要技术,即图像融合和夜视彩色化,分别在下面进行回顾。图像融合通过整合互补数据来组合多源图像,以增强各个源图像中明显的信息,并提高解释的可靠性。这样可以得到更准确的数据(Keys et al.,1990)并提高实用性(Rogers & Wood,1990;Essock et al.,1999)。此外,据报道,融合数据提供了更为稳健的操作性能,例如增加了置信度、减少了歧义性、提高了可靠性和改进了分类(Rogers & Wood,1990;Essock et al.,2001)。图像融合的一般框架可以在参考文献(Pohl & Genderen,1998)中找到。在本章中,我们的讨论重点是像素级图像融合。对融合图像质量的定量评估对于客观比较各个融合算法非常重要,它可以测量有用信息的数量和融合图像中引入的伪影数量。
由于骨盆骨肿瘤解剖结构复杂、骨形状不规则,手术难度较大。临床上常用CT和MRI进行肿瘤评估,各有优缺点。结合CT和MRI图像的数据,可充分发挥二者的优点,为术前评估提供更好的模型。我们利用人工智能辅助CT/MRI图像融合技术,建立了个性化的三维模型,用于术前肿瘤边缘评估。我们使用新型图像融合三维模型对一名患有骨盆骨肉瘤的年轻女性患者进行了评估,并与仅基于CT图像的三维模型进行了比较。融合图像模型显示了更详细的解剖信息,并发现了静脉内多个以前被忽视的栓子。栓子的发现意味着预后极差,不建议在肿瘤切除后进行任何复杂的重建。根据这例骨盆骨肉瘤的经验,我们认为我们的图像融合模型对骨肿瘤非常有帮助。虽然还需要大量临床病例进一步验证,但我们认为我们的模型有可能在骨肿瘤术前评估方面为临床带来益处。