顾名思义,量子图像处理是一种利用量子信息技术处理图像的方法。它是量子信息科学领域的一项相对较新的进步,可以确保高效地管理经典图像处理中使用的简单操作。此过程的第一步也是最重要的一步是将经典图像编码为量子图像,这可以通过多种不同的方法完成。本文详细探讨了 FRQI(量子图像的灵活表示),它对图像进行编码以便在量子计算机上表示。FRQI 状态包含有关颜色及其在图像中的各自位置的信息。一旦达到 FRQI 状态,就会对其应用所需的量子图像处理算法,这对于执行整个过程的特定目的是必要的。FRQI 不仅用于图像表示,还用于量子图像处理的各种其他相关任务。在准备好 FRQI 状态后,在 Qiskit 上进行其电路实现和模拟。
尽管在科学和技术领域是一个相对较新的概念,但正在研究量子计算,并广泛用于寻找解决现有古典公司似乎太复杂的问题的解决方案。虽然量子计算机差异很大,而且使用较复杂,但是却可以提高解决问题的速度和效率的承诺引起了世界研究人员的兴趣,以挖掘该领域的应用。quantum计算机基本上比超级计算机更先进。即使对于超级计算机来说似乎也很复杂的问题,例如在化合物中的原子建模,量子计算机也可以很容易地构成此类任务。目前,量子量表和量子技术一般都用于电动汽车等各种应用,解决复杂的能源挑战,寻求解决空间和宇宙之谜,图像处理以及许多其他应用程序[1]。
摘要。任意的神经风格转移旨在通过引用提供的样式图像来造型内容。尽管为实现内容保存和样式转移性而进行了各种努力,但由于内容和样式功能的重复导致了不愉快的图像人工制品,因此对此任务的学习表现仍然具有挑战性。在本文中,我们学习了从信息理论的角度进行动机的风格的紧凑神经表示。在特殊的情况下,我们在可逆流网络的顺序模块上执行压缩表示,以减少特征冗余,而失去内容保存能力。我们使用Barlow Twins损失来减少信道依赖性,从而提供更好的内容,并优化参考图像和目标图像之间样式代表的Jensen-Shannon差异,以避免使用 - 和
近年来,量子图像处理在图像处理领域引起了广泛关注,因为它有机会将海量图像数据放入量子希尔伯特空间。希尔伯特空间或欧几里得空间具有无限维度,可以更快地定位和处理图像数据。此外,多种类型的研究表明,量子过程的计算时间比传统计算机更快。在量子域中编码和压缩图像仍然是一个具有挑战性的问题。从文献调查中,我们提出了一种 DCT-EFRQI(直接余弦变换量子图像的高效灵活表示)算法来有效地表示和压缩灰度图像,从而节省计算时间并最大限度地降低准备的复杂性。这项工作旨在使用 DCT(离散余弦变换)和 EFRQI(量子图像的高效灵活表示)方法在量子计算机中表示和压缩各种灰度图像大小。使用 Quirk 模拟工具设计相应的量子图像电路。由于量子比特数的限制,总共使用 16 个量子比特来表示灰度图像的系数及其位置。其中,8 个量子比特用于映射系数值,其余量子比特用于生成相应系数的 XY 坐标位置。理论分析和实验结果表明,与 DCT-GQIR、DWT-GQIR 和 DWT-EFRQI 相比,所提出的 DCT-EFRQI 方案在 PSNR(峰值信噪比)和比特率方面提供了更好的表示和压缩。
基于深度学习(DL)的一般图像表示学习(IRL)对于卫星图像引起了极大的兴趣,因为它的能力:i)通过自我监督的学习来模拟大量的大量免费可用遥感(RS)数据,从而大大降低了标记数据的要求; ii)将各种RS问题概括为下游任务。基于学习的方法最初为在RS图像上使用自我监督的IRL铺平了道路(例如[1],[2])。这种方法通过最大化同一图像的两种观点之间的一致性来对卫星图像表示与卷积神经网络(CNN)进行对比度学习,这是通过数据增强策略生成的。关于RS IRL的最新研究集中在卫星图像的掩盖数据建模上,例如[3] - [10]。他们通过遮罩的自动编码器(MAE)促进了自我监督的学习,并具有视觉变压器(VITS)。通过重建卫星图像,用遮盖的零件执行有效的IRL,即他们学习了描述图像的视觉内容的功能,这些功能可用作调整下游任务的专用模型的起点。最近对MAE对卫星图像IRL的兴趣取决于两个主要原因。首先,与对比的自我监督学习相反,MAE能够学习图像表示,而无需应用任何数据增强策略。这对于卫星图像特别重要,因为大多数数据增强策略都是为自然图像而设计的,并且它们直接适应卫星可能总是可行的。)。第二,已经表明,与VIT相结合的MAE可以根据训练数据的数量成比例地将其缩放到较大的DL模型中[11],[12]。但是,当使用MAE时,所得图像表示往往为较低的语义水平[13]。这防止了他们的全部潜力,用于需要更高级别卫星图像语义的许多下游任务(例如,场景分类,土地地图生成等。
什么是计算机视觉?图像分析和计算机视觉的应用。常见的图像和视频格式(非常简短的描述 .jpeg、.tiff、.bmp、.mp4、.avi)、颜色模型:RGB、计算机中的图像表示、图像二值化(基于阈值)、图像特征 - 像素特征、灰度值作为特征、通道的平均像素值、边缘特征(Prewitt 核、Sobel 核)、纹理特征、用例:使用动物数据集进行图像分类(三类 - 狗、猫和熊猫)、带有示例的图像表示、动物数据集的描述、使用 k-NN 或其他 ML 工具进行分类(步骤的简要描述:数据收集、数据表示、将数据集拆分为训练集和测试集、训练分类器、使用 Scikit 学习工具进行评估)。
摘要将深层生成模型纳入城市形式的生成是支持城市设计过程的一种创新且有前途的方法。但是,大多数深层生成的城市形式模型基于图像表示,这些图像表示并未明确考虑城市形式元素之间的拓扑关系。旨在开发深层生成模型并考虑拓扑信息的帮助下,本文回顾了城市形式的生成,深层生成的模型/深度图生成以及建筑和城市形式的深层生成模型的最新艺术状态。基于文献综述,提出了一个基于深层生成模型的基于拓扑的城市形式生成框架。深层生成模型的街道网络生成的假设forgraphgergrotandplot/building configurationGenerationByDeepgenerativeModels/Space语法以及所提出的框架的可行性需要在未来的研究中进行验证。
能源分解通过一个测量整个家庭用电需求的仪表来估计每个电器的用电量。与侵入式负荷监测相比,NILM(非侵入式负荷监测)成本低、易于部署且灵活。在本文中,我们提出了一种新方法,即 IMG-NILM,该方法利用卷积神经网络 (CNN) 分解以图像表示的电力数据。IMG-NILM 不是采用传统的将电力数据作为时间序列处理的方法,而是将时间序列转换为热图,将较高的电力读数描绘为“更热”的颜色。然后,CNN 使用图像表示从聚合数据中检测电器的特征。IMG-NILM 稳健而灵活,在各种类型的电器上均具有一致的性能;包括单一状态和多种状态。它在单个房屋的 UK-Dale 数据集上实现了高达 93% 的测试准确率,其中存在大量电器。在从不同房屋收集电力数据的更具挑战性的环境中,IMG-NILM 也达到了 85% 的非常好的平均准确率。
Shyam R. Sihare 博士 APJ 阿卜杜勒卡拉姆政府学院,计算机科学与应用系,印度西尔瓦萨 电子邮件:shyams_sihare1979@rediffmail.com 收到日期:2022 年 3 月 31 日;修订日期:2022 年 4 月 19 日;接受日期:2022 年 5 月 27 日;发表日期:2022 年 10 月 8 日 摘要:量子计算机和经典计算机的图像表示截然不同。在经典计算机中使用位。然而,在量子计算机中使用量子位。在本文中,量子图像表示与经典图像表示相似。为了表示量子图像,使用了量子位及其相关属性。量子成像以前是通过叠加完成的。因此,使用叠加特征实现量子成像。然后使用酉矩阵来表示量子电路。对于量子表示,我们选择了一张适度的图像。为了创建量子电路,使用了 IBM 的 Qiskit 软件和 Anaconda Python。在 IBM 实时计算机和 Aer 模拟器上,运行了 10,000 次的量子电路。IBM 实时计算机中的噪声比 IBM Aer 模拟器中的噪声降低得更多。因此,Aer 模拟器的噪声和量子比特误差高于 IBM 实时计算机。量子电路设计和图像处理均使用 Qiskit 编程完成,该编程是本文末尾的附录。随着拍摄次数的增加,噪声水平进一步降低。当图像以较低的拍摄次数运行时,噪声和量子比特误差会增加。通过电路计算拍摄次数增加完成的量子图像处理、降噪和误差校正。量子图像处理、表示、降噪和误差校正都利用了量子叠加概念。索引词:Aer 模拟器、实时量子计算机、量子图像、量子图像像素、叠加、量子力学。
使用方差正规化K. Evtimova,Y。Lecun用多层解码器进行稀疏编码。TMLR 2022。ista是一种用于提取数据稀疏表示形式的经典算法。我们将ISTA扩展到与深度神经网络一起使用,应用方差正则化以避免崩溃。用我们的方法提取的稀疏图像表示形式提高了一声学习性能。