图 1:南极冰山跟踪数据库记录的 B30 冰山轨迹(Budge 和 Long,2018 年):2012 年从思韦茨冰架崩解后,它跟随沿海洋流向西移动,2017 年开始向北漂移,最终于 2019 年解体。黑点标记了 CryoSat-2 飞越冰山的可用位置,圆圈表示本研究中使用的 MODIS 和 Sentinel 1 图像的位置 120
1-1简介。1-2光的特性。 1-3折射率。 1-4光路。 1-5的光速。 1-6个阴影。 1-7光的波长。 1-8电磁频谱。 1-9可见区域。 1-10光的双重性质。 1-11 fermat原理2-平面表面的反射和折射2-1灯光射线2-2射线2-2平面表面的反射和折射2-3个临界角度和总内部反射2-4平行平行平板2-5刷新2-6 priST折射2-6最小偏移角度2-7分散2-7分散2-8次彩虹。 3-球形表面上的反射和折射3-1标志3-2符号3-2反射和球形表面的折射3-3镜3-4镜3-4侧面和纵向放大倍率3-5焦点和焦距3-6 3-6虚拟图像3-7高斯公式的虚拟图像3-7衍生。 4-镜头4.1镜头术语4.2薄镜头4.3焦点和焦距4.4偶联点4.5图像跟踪4.6镜头制造商方程4.7薄镜的高斯公式4.8放大倍率4.9镜头的功率4.9镜头4.10镜头4.10复合镜头和等效的厚度厚4.11厚4.11厚4.11。1-2光的特性。1-3折射率。1-4光路。1-5的光速。1-6个阴影。1-7光的波长。1-8电磁频谱。1-9可见区域。1-10光的双重性质。 1-11 fermat原理2-平面表面的反射和折射2-1灯光射线2-2射线2-2平面表面的反射和折射2-3个临界角度和总内部反射2-4平行平行平板2-5刷新2-6 priST折射2-6最小偏移角度2-7分散2-7分散2-8次彩虹。 3-球形表面上的反射和折射3-1标志3-2符号3-2反射和球形表面的折射3-3镜3-4镜3-4侧面和纵向放大倍率3-5焦点和焦距3-6 3-6虚拟图像3-7高斯公式的虚拟图像3-7衍生。 4-镜头4.1镜头术语4.2薄镜头4.3焦点和焦距4.4偶联点4.5图像跟踪4.6镜头制造商方程4.7薄镜的高斯公式4.8放大倍率4.9镜头的功率4.9镜头4.10镜头4.10复合镜头和等效的厚度厚4.11厚4.11厚4.11。1-10光的双重性质。1-11 fermat原理2-平面表面的反射和折射2-1灯光射线2-2射线2-2平面表面的反射和折射2-3个临界角度和总内部反射2-4平行平行平板2-5刷新2-6 priST折射2-6最小偏移角度2-7分散2-7分散2-8次彩虹。3-球形表面上的反射和折射3-1标志3-2符号3-2反射和球形表面的折射3-3镜3-4镜3-4侧面和纵向放大倍率3-5焦点和焦距3-6 3-6虚拟图像3-7高斯公式的虚拟图像3-7衍生。4-镜头4.1镜头术语4.2薄镜头4.3焦点和焦距4.4偶联点4.5图像跟踪4.6镜头制造商方程4.7薄镜的高斯公式4.8放大倍率4.9镜头的功率4.9镜头4.10镜头4.10复合镜头和等效的厚度厚4.11厚4.11厚4.11。
简介 蜜蜂群落可以充当有害物质的探测器,通过高死亡率发出有毒分子存在的信号,或者在花粉、花蜜或幼虫中积累非急性致命物质(如重金属、杀菌剂和除草剂)的残留物(Celli,1983 年;Porrini 等人,2002 年)。它们于 1935 年首次被用作监测环境质量的生物指标(Crane,1984 年)。农药使用检测是蜜蜂监测应用的研究领域之一(Atkins 等人,1981 年;Celli,1983 年;Mayer 和 Lunden,1986 年;Mayer 等人,1987 年;Celli 等人,1988 年;Celli 和 Porrini,1991 年;Celli 等人,1991 年;Porrini 等人,1996 年)。由于蜂群中约四分之一的居民是活跃的觅食者,因此蜂群的状况反映了其栖息地的状态。使蜂群成为特别合适的环境指标的必要条件包括:养蜂人可以轻松饲养蜂群,觅食者可以覆盖大片区域,并且出于自身利益而收集花粉或花蜜等样本。(Celli 和 Maccagnani,2003 年)。蜜蜂群的发展取决于许多因素,包括但不限于蜂王年龄、营养、蜂群强度、病原体和寄生虫以及区域特性。因此,需要大量样本才能客观地了解蜜蜂危害的因果关系。在旨在了解蜜蜂群落崩溃原因的德国蜜蜂项目中,2004 年至 2009 年间,在全国 125 个地方监测了 1,200 多个蜂巢。这项研究揭示了许多相关性,但也留下了一些问题。作者推测,适合记录亚致死或慢性影响的研究设计可能会揭示出杀虫剂对蜂群崩溃的负面影响,而他们无法检测到这种负面影响。(Genersch 等人,2010 年)。因为使用蜜蜂作为生物指标的大规模研究非常耗时耗力,所以它们的数量仍然很少。1978 年,Giordani 等人证明了氯化烃杀虫剂硫丹的剧毒作用。然而,需要很多年的时间和几项研究才能提供足够的证据来改变对该物质的使用限制。后来,在意大利北部的一个大规模监测项目中,记录了数百个蜂巢在农业产生的高和低化学压力下的蜜蜂死亡率。通过分析伤亡人数特别多的蜂巢中的死蜂,能够确定造成 76% 已记录的大规模死亡的分子。然而,作者提到的设计的一个缺点是,收集到的死蜂数量只是一个保守估计,因为无法记录现场致死剂量造成的损失。(Celli 和 Maccagnani,2003 年)。这些研究展示了蜜蜂监测在各个领域的潜力,从农药监管到蜜蜂健康研究的普遍进展。然而,它们是先驱项目,并不代表通常的研究方式。到目前为止,因子分析和预防活动主要建立在少数蜂巢的快照数据上,这些数据可以更经济地收集。技术的使用可以帮助降低劳动强度,从而降低此类项目的成本。最近开发了一些基于不同技术的系统,但仍然存在缺陷。有些计数系统试图量化入口处的进出蜜蜂,例如带电容检测的 BeeCheck(Gombert 等人,2019 年)。由于它们的设计,计数系统只能记录短距离内的传粉者。它们的感官原始数据的信息内容大大减少,无法用成像方法进行评估。在复杂的情况下,例如蜜蜂相互踩踏或形成群体,它们很容易出现测量不准确,因此不适合对死亡率进行可靠的评估。借助视觉系统,可以通过一系列图像跟踪每只动物。第一批科学研究已经可以展示原型系统,该系统使用蜂巢入口处的摄像系统来确定寄生虫感染情况(Schurischuster 等人,2018 年)。从 2017 年到 2020 年,欧盟资助的 IoBee 项目旨在通过蜂群数据联网来确定全球蜜蜂种群的变化。该项目使用蜂巢入口处的摄像系统来确定寄生虫感染情况(Schurischuster 等人,2018 年)。从 2017 年到 2020 年,欧盟资助的 IoBee 项目旨在通过蜂群数据联网来识别全球蜜蜂种群的变化。该项目使用蜂巢入口处的摄像系统来确定寄生虫感染情况(Schurischuster 等人,2018 年)。从 2017 年到 2020 年,欧盟资助的 IoBee 项目旨在通过蜂群数据联网来识别全球蜜蜂种群的变化。