散射实验是探索基础物理的成熟工具。特别是,碰撞实验可以产生高能和稀有粒子,从而研究它们的相互作用。对此类过程的解释需要精确的理论预测,而这往往涉及无法从图解微扰论中提取的贡献。例如,对于强子碰撞就是这种情况,量子色动力学 (QCD) 的非微扰效应可能发挥重要作用 [1]。解决此类非微扰区域的最有力工具是格点规范理论 (LGT),即规范场论的离散形式 [2]。使用量子蒙特卡罗 [3,4] 等先进的数值方法,LGT 已经能够成功探索强耦合现象,例如 QCD 中的强子谱,但实时动态是一个挑战。尽管最近取得了进展 [5],但目前还无法精确计算散射过程,这也是促使人们寻找替代技术的原因之一 [6]。近年来,量子方法揭示了探索基础物理的潜在替代方法(参见 [7 – 13] 的评论)。他们的核心重点是 LGT,它似乎也是对
有责任遵守安全标准,并为其硬件、软件和系统提供适当的设计和保护措施,以最大限度地降低风险,避免产品故障或失效可能导致人员伤亡、身体伤害或财产损失(包括数据丢失或损坏)的情况。在客户使用产品、创建包括产品在内的设计或将产品纳入自己的应用程序之前,客户还必须参考并遵守 (a) 所有相关东芝信息的最新版本,包括但不限于本文件、产品规格、数据表和应用说明以及“东芝半导体可靠性手册”中规定的注意事项和条件,以及 (b) 产品将用于或用于的应用程序的说明。客户对其自己的产品设计或应用的所有方面负全部责任,包括但不限于 (a) 确定在此类设计或应用中使用本产品的适当性;(b) 评估和确定本文件或图表、图解、程序、算法、示例应用电路或任何其他参考文件中包含的任何信息的适用性;以及 (c) 验证此类设计和应用的所有操作参数。东芝对客户的产品设计或应用不承担任何责任。·产品既不适用于也不保证用于需要
Haar 测度在量子信息中起着至关重要的作用,但其研究通常需要对表示理论有深入的理解,这对初学者来说是一个挑战。本教程旨在提供量子信息中 Haar 测度工具的基本介绍,仅利用线性代数的基本知识,旨在使该主题更容易理解。本教程首先介绍 Haar 测度,特别强调刻画矩算子,这是计算 Haar 测度积分的基本元素。它还涵盖了对称子空间的属性,并介绍了张量网络图解符号等有用工具,有助于可视化和简化计算。接下来,本教程探讨了幺正设计的概念,提供了等效定义,随后探讨了幺正设计的近似概念,阐明了这些不同概念之间的关系。并说明了 Haar 测度计算的实际例子,包括众所周知的公式的推导,例如量子通道的旋转。最后,本教程展示了 Haar 测度计算在量子机器学习和经典阴影层析成像中的应用。
可扩展量子计算的首选纠错方法是使用格手术的表面代码。基本的格手术操作,即逻辑量子位的合并和分裂,对逻辑状态的作用是非单一的,而且不容易被标准电路符号捕获。这就提出了一个问题:如何最好地设计、验证和优化使用格手术的协议,特别是在具有复杂资源管理问题的架构中。在本文中,我们证明了 ZX 演算(一种基于双代数的量子图解推理形式)的运算与格手术的运算完全匹配。红色和绿色“蜘蛛”节点匹配粗糙和平滑的合并和分裂,并遵循匕首特殊结合 Frobenius 代数的公理。一些格手术操作需要非平凡的校正操作,这些操作在使用 ZX 演算时以图集合的形式原生捕获。我们通过考虑两种操作(T 门和产生 CNOT)首次体验了微积分作为格手术语言的强大功能,并展示了 ZX 图重写规则如何为这些操作提供新颖、高效且高度可配置的格手术程序。
图解扩展是处理相关电子系统的中心工具。在热平衡下,它们最自然地定义了Matsubara形式主义。但是,从Matsubara计算中提取任何动态响应函数最终需要从虚构到实频域到实频域的错误分析延续。最近提出了[物理学。修订版b 99,035120(2019)],可以使用符号代数算法分析进行任何相互作用膨胀图的内部Matsubara总结。总结的结果是复杂频率而不是Matsubara频率的分析函数。在这里,我们应用了此原理并开发了一种示意的蒙特卡洛技术,该技术直接在实际频率轴上产生。我们介绍了在非平凡参数方面的掺杂32x32环状方晶格哈伯德模型的自我能量σ(ω)的结果,其中pseudogap的特征似乎靠近antinode。我们讨论了在实频轴上的扰动序列的行为,尤其表明,在使用截短的扰动系列上使用最大熵方法时,必须非常小心。在分析延续很困难的情况下,我们的方法对将来的应用具有巨大的希望,而中阶扰动理论可能会融合结果。
矩阵差异(或矩阵演算)被广泛接受为各种领域的必不可少的工具,包括估计理论,信号处理和机器学习。这也用于量子信息理论的许多领域(例如,量子断层扫描[1],[2],量子系统的最佳控制[3]以及对纠缠否定性[4])的最佳控制。矩阵差异提供了一种方便的方法,可以相对于独立变量的每个组件,收集因变量的每个组件的衍生物,在这种情况下,因变量和自变量可以是标量,矢量或矩阵。然而,通常的矩阵(或索引)符号通常会避免繁琐的计算和困难的最直观解释。已知可以在线性代数中成功应用使用字符串图的图表表示(请参见[5]及其中的参考文献)。在本文中,我们提供了一种简单的图解方法,用于得出有用的矩阵差异公式。请注意,可以分别代表量子状态和量子过程的半半数矩阵和完全正面的图被视为Hermitian矩阵的真实希尔伯特空间中的载体和矩阵。在这里我们提到了一些相关的工作。参考。[6],呈现图形表示DEL操作员(即∇)的方式,其中计算仅限于三维欧几里得空间的情况。参考文献[7]提出了一个图表,用于操纵张量导数相对于一个参数。我们采用了与这些参考文献中给出的相似的表示法。
《全球仲裁评论》的《国际仲裁损害赔偿指南》第四版在前几版大获成功的基础上再接再厉。如前言所述,本书旨在帮助国际仲裁界的所有参与者更清楚地了解损害赔偿问题,并更有效地将这些问题传达给仲裁庭,以进一步实现共同目标,即协助仲裁员就损害赔偿做出更准确、更合理的裁决。本书仍在编写中,每一版都会添加新的和更新的材料。特别是,第四版包含了不同作者的更新章节和新作者的贡献,包括一章关于新冠疫情下的损害赔偿问题。第四版力求通过使用图表、图形、表格和图解等视觉效果来改善内容的呈现;通过算例和案例研究来解释所讨论的原则在实践中的应用;以及流程图和清单来列出分析或定量模型中的步骤。我们还鼓励作者在线提供其他资源,例如电子表格、详细计算、其他示例或案例研究以及其他材料。我们希望修订版能够推进早期版本的目标,使国际仲裁中的损害赔偿问题对仲裁员和该领域的其他参与者来说更加易于理解和不那么令人生畏,并帮助参与者更有效地向仲裁庭提出这些问题。我们继续欢迎读者就下一版如何进一步改进提出意见。
摘要 使用绿色氢气为汽车提供动力被认为有助于减轻导致气候变化的温室气体 (GHG) 排放。另一方面,在工业密集地区减少温室气体排放的需求更为迫切,这些地区传统上位于人口密集区附近。在这些地区,公路运输是影响空气质量和附近社区健康的环境压力的重要来源:在欧洲,私家车、货车、卡车和公共汽车产生的温室气体排放量占交通运输总排放量的 70% 以上,以及颗粒物和氮氧化物。欧洲氢能战略考虑使用绿色氢作为能源载体来实现工业和运输部门的脱碳,强调了生产、储存和分配氢气的基础设施的必要性。工业场地和现有基础设施的空间配置可以促进氢能枢纽的建立,以城市工业共生的方式满足企业的物流需求以及公共和私人出行需求。因此,本研究旨在调查通过支持使用绿色氢部署低碳交通,在产业集群和附近城市地区之间创造协同效应所提供的机会,以提高当地的可持续性。对现有文献进行了回顾,以图解和讨论采用这种战略的可持续性相关基础,并对最新研究和应用结果进行了更新分析,适用于未来的研究应用和支持决策过程。关键词:气候变化缓解、绿色氢、可持续交通、共生、城市工业。
我们为近期量子自然语言处理(QNLP)提供概念和数学基础,并以量子计算机科学家友好的术语进行。我们选择了说明性演示方式,并提供了支持经验证据和有关数学一般性的正式陈述的参考。我们回想起我们采用的自然语言的量子模型如何[42]规范结合语言含义与丰富的语言结构,最著名的是语法。尤其是,在量子系统的仿真下,它需要一个类似量子的模型来结合含义和结构,将QNLP建立为量子本性。更重要的是,现在领先的嘈杂的中间量子量子(NISQ)范式用于编码有关量子硬件,变异量子电路的经典数据,使NISQ非常友好地友好:语言结构可以用作免费的午餐,与昂贵的典型典型的类别编码相反,可以将语言结构编码为免费编码,该典型的典型的编码为格式编码。QNLP任务的量子加速已在先前的工作中建立[116]。在这里,我们提供了更广泛的任务,所有任务都具有相同的优势。图解推理是QNLP的核心。首先,量子模型通过分类量子力学的图形形式主义将语言解释为量子过程[38]。其次,这些图是通过ZX-Calculus翻译成量子电路的。含义的参数化成为要学习的电路变量:
- 威布尔形状参数 TCR - 电阻温度系数 C - 电容值 THS - 热点温度 CR - 循环速率 V - 电压 D - 缺陷密度 VA - 施加的最大电压 D056 - 空军维护数据库 VR - 额定电压 DIP - 双列直插式封装 X - 电介质厚度 DPDT - 双刀双掷 AT - 温度变化 Ea - 阿伦尼乌斯关系中使用的激活能 EMP - 电磁脉冲 ESD - 静电放电 F - 故障 FLHP - 全马力 FSN - 联邦库存编号 I 电流 IC - 集成电路 IPB - 图解零件故障 K - 玻尔兹曼常数 L - 电感 S - 故障率 LC - 生命周期 MCTF - 平均故障周期数 MLB - 多层板 MTTF - 平均故障时间 NOC - 未分类 P - 电源 PC - 印刷电路 PCB - 印刷电路板 PGA - 引脚栅格阵列 PPM - 百万分率 PWB -印刷线路板 0 - 热阻 QPL - 合格产品列表 R - 电阻(单位:欧姆) RF - 射频 RIW - 可靠性改进保证 S - 应力比 SIP - 单列直插式封装 SMC - 表面贴装元件 SMT - 表面贴装技术 SPC - 统计过程控制 SPST - 单刀单掷 SR 串联电阻 SSR 固态继电器 T - 温度 TA - 环境温度