传统镜子在反射时会改变圆偏振光的手性。然而,人们对设计和制造手性保持镜子以及手性反射超表面的需求日益增长,这些镜子的反射光子自旋态可调,可在紫外和可见光域的宽波长范围内工作。到目前为止,大多数手性镜都是通过自上而下的技术制备的,例如电子束光刻,这些技术成本非常高,并且难以扩展到宏观设备。这里介绍了一种有效的自下而上的策略,用于通过使用逐层组装取向银纳米线层来制造手性镜,这些银纳米线层是通过在半反射银层上进行掠入射喷涂制备的。由此产生的手性超表面对紫外、可见光和近红外域中宽波长范围内的圆偏振光显示出结构相关的差分反射率,达到了极高的品质因数。它们的差分反射率可达到最大偏振效率的 95%,且反射光的旋向性部分保留。这些具有可调手性反射率的大面积手性镜在光学、传感和手性光与物质相互作用等各个领域都有着广阔的应用前景。
摘要 高强度激光场可以电离原子和分子,也可以引发分子解离。本文综述了利用冷靶反冲离子动量谱和定制强场飞秒激光脉冲的潜力所取得的实验最新进展。说明了通过检测离子动量来对分子结构和小分子取向进行成像的可能性。详细分析了非绝热隧道电离过程,重点关注隧道出口处电子波包的性质。本文综述了电子在圆偏振光隧穿过程中如何获得角动量和能量。电子是一个具有振幅和相位的量子物体。大多数强场电离实验都集中在电子波函数的绝对平方上。电子全息角条纹技术使得能够检索强场电离中的维格纳时间延迟,这是电子波函数在动量空间中的相位的属性。动量空间中的相位与位置空间中的振幅之间的关系使我们能够获取有关电子在隧道出口处的位置的信息。最后,讨论了最近研究强场电离纠缠的实验。
摘要:光学活性自旋系统与具有高协同性的光子腔耦合可产生强光-物质相互作用,这是量子网络的关键成分。然而,获得用于量子信息处理的高协同性通常需要使用光子晶体腔,而光子晶体腔从自由空间的光学访问能力较差,尤其是自旋相干控制所需的圆偏振光。在这里,我们展示了协同性高达 8 的 InAs/GaAs 量子点与制造的靶心腔的耦合,该腔提供近乎简并和高斯偏振模式以实现高效的光学访问。我们观察到量子点的自发辐射寿命短至 80 ps(约 15 个 Purcell 增强),从腔体反射的光的透明度约为 80%。利用诱导透明度进行光子切换,同时相干控制量子点自旋,可以为建立量子网络的持续努力做出贡献。
摘要:随着微纳光学的发展,超表面作为新型电磁波控制器件受到越来越多的关注,其中超透镜由于其独特的光学性质,作为超表面的典型应用得到了开发和应用。然而,以前的大多数超透镜只能产生一个焦点,严重限制了它们的应用。受苍蝇复眼的启发,我们提出了一种特殊的空间多焦点超透镜。我们的超透镜可以反转入射圆偏振光的偏振态,然后将其聚焦。此外,通过设计合理的相位和区域分布,可以实现水平排列的多焦点超透镜,这与垂直排列的多焦点超透镜类似。最重要的是,通过结合这两种分布方法,可以很好地实现具有低串扰的空间三维阵列多焦点超透镜。所提出的仿生三维阵列多焦点超透镜具有惊人的聚焦效果,有望在成像、纳米粒子操控、光通信等领域得到应用。
*gdliu@xtu.edu.cn 摘要:偏振光在通信波段具有多种潜在应用,包括光通信、偏振成像、量子发射和量子通信。然而,优化偏振控制需要在动态可调性、材料和效率等领域不断改进。在本文中,我们提出了一种基于硼墨烯的结构,它能够通过局域表面等离子体(LSP)的相干激发将光通信波段的线性偏振光转换为任意偏振光。此外,可以通过将第二个硼墨烯阵列放置在第一个硼墨烯阵列的顶部并使它们的晶面相对旋转90°来实现双层硼墨烯结构。通过独立控制双层硼墨烯的载流子浓度可以切换反射光的偏振态的旋转方向。最后利用偶极子源实现偏振光的发射,其发射速率比自由空间中的发射速率高两个数量级,并且可以通过操纵载流子浓度来动态控制偏振态。我们的研究简单紧凑,在偏振器、偏振探测器和量子发射器领域具有潜在的应用。1.引言 偏振是电磁波的本征特性之一,它表示电磁矢量在空间中方向改变的性质[1],包括三种偏振态:线偏振光(LPL)、椭圆偏振光(EPL)和圆偏振光(CPL)。在通信和传感领域,与LPL相比,CPL使光能够抵抗环境变化,并且忽略了散射和衍射的影响[2-4]。直接产生CPL比较困难,但可以通过调节两个正交电场分量之间的电磁振幅和相位,将LPL转换成CPL[5]。超材料可以灵活地操控光的散射振幅、相位和偏振,理论上可以将光的波前塑造成任何所需的形状。偏振转换的早期研究表明,由贵金属组成的超材料
此外,偏振起着重要作用,因为它可以影响光束传播的深度。例如,众所周知,圆偏振光比线偏振光传播得更深 [3]。根据散射单元大小,偏振会保留光学记忆 [4]。拉盖尔-高斯 (LG) 光束 [5] 是一种涡旋光束,它可以携带不同类型的偏振(线性、圆形、径向和方位角)以及以ℓ 值的轨道角动量 (OAM) 为特征的相位前沿。具有空间不均匀偏振分布的光束称为矢量光束。各种空间模式(例如径向)具有不可分离的圆偏振和 OAM 部分。偏振和空间模式的结合导致了经典纠缠——Forbes 团队 [6] 使用经典纠缠矢量光束在湍流介质中实现更好的成像。矢量光束的关键特性(例如径向和方位角)结合了偏振和空间模式,它们是不可分离的且相互纠缠。这些特性不仅是量子纠缠所独有的,也适用于经典局部纠缠的矢量光束[6-9]。此外,矢量光束的不可分离特性不仅在光学成像中而且在光通信中都具有重要意义,因为人们正在探索其偏振自由度和空间模式来编码信息[7,10]。此外,根据理论[11],ℓ值越高,透射率越高,穿透能力越好,因此光密度(OD)越低,观察到的散射越少。当光脉冲进入组织等高度散射的介质时,它会分解成三个主要成分:弹道光束、蛇形光束和漫射光束。弹道分量保留了光的原始属性,因为它在前向方向上相干散射,而扩散分量则变得随机并在介质中游走。蛇形分量在前向方向上略微散射,传播路径更短并保留初始信息[12]。本研究重点研究了 LG 矢量涡旋光束在弹道(z < l tr)和扩散(z > l tr)区域通过小鼠脑组织的传输,其中 z 是混浊介质的厚度,l tr 是传输平均自由程[13]。研究了不同厚度小鼠脑组织不同特殊位置的不同类型偏振,以证明经典纠缠在经典极限下以更高光子通量潜在地改善成像方面的作用。大脑是一种由树状结构的神经元和轴突组成的生物组织。神经元由蛋白质聚合物的整合网络组织,这些聚合物被认为是一种手性介质。这种手性介质将通过改变其偏振状态与光的电磁场相互作用;这种效应使大脑成为手性生物等离子体[14]。结构化矢量光有望通过与电偶极子、磁偶极子和
此外,偏振起着重要作用,因为它可以影响光束传播的深度。例如,众所周知,圆偏振光比线偏振光传播得更深 [3]。根据散射单元大小,偏振会保留光学记忆 [4]。拉盖尔-高斯 (LG) 光束 [5] 是一种涡旋光束,它可以携带不同类型的偏振(线性、圆形、径向和方位角)以及以ℓ 值的轨道角动量 (OAM) 为特征的相位前沿。具有空间不均匀偏振分布的光束称为矢量光束。各种空间模式(例如径向)具有不可分离的圆偏振和 OAM 部分。偏振和空间模式的结合导致了经典纠缠——Forbes 团队 [6] 使用经典纠缠矢量光束在湍流介质中实现更好的成像。矢量光束的关键特性(例如径向和方位角)结合了偏振和空间模式,它们是不可分离的且相互纠缠。这些特性不仅是量子纠缠所独有的,也适用于经典局部纠缠的矢量光束[6-9]。此外,矢量光束的不可分离特性不仅在光学成像中而且在光通信中都具有重要意义,因为人们正在探索其偏振自由度和空间模式来编码信息[7,10]。此外,根据理论[11],ℓ值越高,透射率越高,穿透能力越好,因此光密度(OD)越低,观察到的散射越少。当光脉冲进入组织等高度散射的介质时,它会分解成三个主要成分:弹道光束、蛇形光束和漫射光束。弹道分量保留了光的原始属性,因为它在前向方向上相干散射,而扩散分量则变得随机并在介质中游走。蛇形分量在前向方向上略微散射,传播路径更短并保留初始信息[12]。本研究重点研究了 LG 矢量涡旋光束在弹道(z < l tr)和扩散(z > l tr)区域通过小鼠脑组织的传输,其中 z 是混浊介质的厚度,l tr 是传输平均自由程[13]。研究了不同厚度小鼠脑组织不同特殊位置的不同类型偏振,以证明经典纠缠在经典极限下以更高光子通量潜在地改善成像方面的作用。大脑是一种由树状结构的神经元和轴突组成的生物组织。神经元由蛋白质聚合物的整合网络组织,这些聚合物被认为是一种手性介质。这种手性介质将通过改变其偏振状态与光的电磁场相互作用;这种效应使大脑成为手性生物等离子体[14]。结构化矢量光有望通过与电偶极子、磁偶极子和