由于农业和粮食系统对环境的影响很大,例如它们对气候变化的贡献,因此迫切需要减少其影响。国际和国家政府设定了可持续性目标并实施相应的措施。尽管如此,全球化制度的批评者声称,领土行政规模更适合解决可持续性问题。然而,在国家一级,地方当局很少采用系统性的环境评估来增强其行动计划。本文采用领土生命周期评估方法来改善当地环境农业食品计划。目的是确定显着的直接和间接环境热点,其起源,并制定有效的缓解策略。该方法适用于法国西北部战略农业地区Finistere行政部门。对多种环境标准,包括气候变化,化石资源稀缺,毒性和土地利用。发现,所研究的当地食品系统的主要环境热点来自间接来源,例如牲畜饲料或柴油消耗。牲畜的减少和有机农业转化是最有效的策略,导致气候变化指标降低了25%。但是,在国家目标之后,整体建模的影响减少是不可能的,并且在土地使用指标上仍然有限。这些结果突出了生命周期评估的创新应用,该评估是地方一级的,为进一步的系统和前瞻性局部农业食品评估提供了见解。此外,它们为地方当局提供了指导,以增强计划策略的可持续性。
近期太空项目的兴起 [1] 重新引发了人们对卫星通信的兴趣。这在物联网 (IoT) 社区中尤为明显,该社区不断寻求多样化应用场景 [2],同时提供全球任何地方的网络覆盖。卫星在新的太空环境中独有的特性(廉价发射和快速采购廉价纳米卫星,又称立方体卫星)为物联网网络提供了架构替代方案,具有前所未有的规模和灵活性 [3]。部署在地球同步轨道 (GEO) 上的卫星的自转周期与地球相同(在地面观察者看来是静止的),可以为 35,786 公里高度的特定区域提供持续的网络连接(图 1 和表 I)。另一方面,低地球轨道 (LEO) 卫星以大约 7 公里/秒的速度在较低高度(160 公里至 1,000 公里之间)移动,并且可以在可预测的时间间隔提供间歇性和定期网络连接。当部署在星座中时,LEO 卫星可以增加重访频率,但至少需要 60 颗卫星才能确保持续覆盖。通过在这些卫星上搭载物联网设备,出现了新的连接机会。通信技术的进步使得今天可以使用与地面物联网网络相同的技术在物联网设备和卫星之间直接通信 [4],这直到最近几年才闻所未闻。此类技术最显著的进步包括 LoRa/LoRaWAN [5] 和 NB-IoT [6],它们提供长距离通信能力并降低设备能耗(18 mA @7dBm)。
熵的一个通俗解释是,它是通过了解一个随机实验的结果而获得的知识。条件熵则被解释为在了解另一个随机实验的结果(可能具有统计相关性)后,通过了解另一个随机实验的结果而获得的知识。在经典世界中,熵和条件熵只取非负值,这与人们对上述解释的直觉一致。然而,对于某些纠缠态,在评估普遍接受的、信息论上合理的量子条件熵公式时,人们会得到负值,从而得出一个令人困惑的结论:在量子世界中,人们所能知道的比什么都少。这里,我们引入了一个物理驱动的框架来定义量子条件熵,该框架基于受热力学第二定律(熵不减少)和熵的广延性启发的两个简单假设,并且我们认为所有合理的量子条件熵定义都应该遵循这两个假设。然后我们证明,所有合理的量子条件熵在某些纠缠态下都取负值,因此在量子世界中,人们不可避免地可以知道的比什么都少。我们所有的论证都是基于尊重第一假设的物理过程的构造,第一假设是受热力学第二定律启发的。
香港,2024年11月7日 — 数码港与上海临港经济发展集团(临港集团)作为人工智能产业的推动者,自2023年建立战略合作伙伴关系以来,合作无间,推动香港与上海协同创新创业。双方积极响应国家加快培育优质新生产力的号召,推动人工智能生态圈和产业发展。今天,双方携手一家内地领先的人工智能公司,在第七届中国国际进口博览会期间宣布成立“沪港人工智能产业加速联盟”(联盟)。这家内地领先的人工智能公司将利用其在计算基础设施方面的丰富行业经验以及在上海和香港的发展,进一步扩大创新科技合作,对接高科技资源,共建人工智能和高科技生态圈,加速两地形成优质新生产力。联盟成员包括上海、香港的人工智能领军企业,以及MiniMax、Pegasus、Laurry AI、MateZ Lab、Sourcy.ai等科技新秀。
摘要 — 近年来,生成式人工智能技术成为人工智能领域的一项重大进步,以其语言和图像生成能力而闻名。同时,天空地一体化网络 (SAGIN) 是未来 B5G/6G 实现无处不在的连接的重要组成部分。受此启发,本文探讨了生成式人工智能在 SAGIN 中的集成,重点关注潜在应用和案例研究。我们首先全面回顾了 SAGIN 和生成式人工智能模型,重点介绍了它们的能力和集成机会。得益于生成式人工智能生成有用数据和促进高级决策过程的能力,它可以应用于 SA-GIN 的各种场景。因此,我们对它们的集成进行了简要概述,包括信道建模和信道状态信息 (CSI) 估计、联合空天地资源分配、智能网络部署、语义通信、图像提取和处理、安全和隐私增强。接下来,我们提出了一个利用生成扩散模型 (GDM) 构建通道信息图的框架,以提高 SAGIN 的服务质量。仿真结果证明了所提框架的有效性。最后,我们讨论了生成 AI 支持的 SAGIN 的潜在研究方向。
摘要 在即将到来的 6G 时代,现有的地面网络已经发展成为天空地一体化网络 (SAGIN),为应用和服务通信提供超高数据速率、无缝网络覆盖和无处不在的智能。然而,SAGIN 中的传统通信仍然面临数据机密性问题。幸运的是,SAGIN 上的量子密钥分发 (QKD) 概念能够为使用量子密码的 SAGIN 中的安全通信提供信息论安全性。因此,在本文中,我们提出了量子安全的 SAGIN (Q-SAGIN),它可以使用量子力学实现经过验证的安全通信来保护空间、空中和地面节点之间的数据通道。此外,我们提出了一个通用的 QKD 服务提供框架,以在 Q-SAGIN 通信的不确定性和动态性下最大限度地降低 QKD 服务的成本。在该框架中,基于光纤的 QKD 服务部署在无源光网络中,具有低损耗和高稳定性的优势。此外,在实时数据传输阶段,提供覆盖范围广且灵活的基于卫星和无人机的 QKD 服务作为补充。最后,为了检验所提出的概念和框架的有效性,对元宇宙中的 Q-SAGIN 进行了案例研究,其中所提出的框架有效地解决了元宇宙应用中安全通信的不确定和动态因素。
摘要:天空地一体化网络(SAGIN)为异构网络中无处不在的用户提供了无缝的全球覆盖和跨域互联,极大地促进了智能移动设备和应用的快速发展。然而,对于计算能力和能量预算有限的移动设备来说,满足计算密集型无处不在的移动应用的严格延迟和能量要求仍然是一个严峻的挑战。因此,鉴于地面移动网络的巨大成功,在SAGIN中引入移动边缘计算(MEC)已成为解决该挑战的有前途的技术。通过在移动网络边缘部署计算、缓存和通信资源,SAGIN MEC既提供低延迟、高带宽,又提供广泛覆盖,大大提高了移动应用的服务质量。由于其高度动态、异构和复杂的时变拓扑结构,仍然存在许多前所未有的挑战。因此,在SAGIN中有效的MEC部署、资源管理和调度优化具有重要意义。然而,现有的研究大多只关注网络架构和系统模型,或对计算卸载的具体技术进行分析,而没有对SAGIN的关键MEC技术进行完整的描述。基于此,本文首先提出了SAGIN网络系统架构和服务框架,随后描述了其特点和优势。然后,详细讨论了SAGIN中的MEC部署、网络资源、边缘智能、优化目标和关键算法。最后,讨论了SAGIN中MEC的潜在问题和挑战。
摘要 —天空地一体化网络(SAGIN)是第六代(6G)通信中最有前途的先进范式之一。SAGIN 可以为互联应用和服务支持高数据速率、低延迟和无缝网络覆盖。然而,随着量子计算机容量的不断增加,SAGIN 中的通信面临着巨大的安全威胁。幸运的是,用于在 SAGIN 中建立安全通信的量子密钥分发(QKD),即 SAGIN 上的 QKD,可以提供信息论安全性。为了最大限度地降低具有异构节点的 SAGIN 中的 QKD 部署成本,本文提出了一种使用随机规划的 SAGIN 上的 QKD 资源分配方案。所提出的方案通过两阶段随机规划(SP)制定,同时考虑了安全要求和天气条件等不确定性。在大量实验下,结果清楚地表明,所提出的方案可以在各种安全要求和不可预测的天气条件下实现最优部署成本。索引词——量子密钥分发、空地一体化网络、资源分配、随机规划。
近期太空项目的兴起 [1] 重新点燃了人们对卫星通信的兴趣。这在物联网 (IoT) 社区中尤为明显,该社区不断寻求多样化应用场景 [2],同时提供全球任何地方的网络覆盖。卫星在新的太空环境中独有的特性(廉价发射和快速采购廉价纳米卫星,又称立方体卫星)为物联网网络提供了架构替代方案,具有前所未有的规模和灵活性 [3]。部署在地球同步轨道 (GEO) 上的卫星的自转周期与地球相同(在地面观察者看来是静止的),可以为 35,786 公里高度的特定区域提供持续的网络连接(图 1 和表 I)。另一方面,低地球轨道 (LEO) 卫星以大约 7 公里/秒的速度在较低高度(160 公里至 1,000 公里之间)移动,并且可以在可预测的时间间隔提供间歇性和定期网络连接。当部署在星座中时,LEO 卫星可以增加重访频率,但至少需要 60 颗卫星才能确保持续覆盖。通过在这些卫星上搭载物联网设备,出现了新的连接机会。通信技术的进步使得今天可以使用与地面物联网网络相同的技术在物联网设备和卫星之间直接通信 [4],这直到最近几年才闻所未闻。此类技术最显著的进步包括 LoRa/LoRaWAN [5] 和 NB-IoT [6],它们提供长距离通信能力并降低设备能耗(18 mA @7dBm)。
摘要 天空地一体化网络(SAGIN)作为新兴6G网络不可或缺的组成部分,旨在通过融合卫星网络、空中网络和地面网络,提供无处不在的网络连接和服务。在6G SAGIN中,各种网络服务具有需求多样化、移动性复杂、资源多维等特点,对服务发放带来巨大挑战,亟待开发面向服务的SAGIN。本文从面向服务网络的新视角对6G SAGIN进行全面的回顾。首先,我们提出了面向服务的网络需求,然后提出了面向服务的SAGIN管理架构。根据服务的特点和需求,提出并讨论了两类关键技术,即异构资源编排技术和云边协同技术,这些技术促进了不同网段的互操作,并协同编排不同域之间的异构资源。此外,还介绍和讨论了未来的潜在研究方向。2022 中国航空航天学会。由 Elsevier Ltd. 制作和托管。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。