方法论:分析了100 cm源到表面距离(SSD)的PDD值(SSD)的PDD值,并分析了Elekta Nha Sli 1998线性加速器的6 mV和15 mV光子光束的扩展SSD和15 mV光子光束。通过将电离室放置在水幻影中,以在水幻影中的z = 0-30 cm和使用10 x 10 cm 2的平方场大小中收集PDD数据。的光子能量为6 mV和15 mV,用于测量,龙门和准直角均固定为零程度。PDD的扩展SSD下,从测量的PDD值为100 cm SSD的扩展SSD,120 cm,130 cm和140 cm。
该图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。随着地面距离的增加,波束宽度的扩大,加上目标在波束内的时间增加,相互平衡,从而使整个扫描带的分辨率保持不变。这种在整个成像扫描带上实现均匀、精细的方位角分辨率的方法称为合成孔径
该图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。随着地面距离的增加,波束宽度的扩大,加上目标在波束内的时间增加,相互平衡,从而使整个扫描带的分辨率保持不变。这种在整个成像扫描带上实现均匀、精细的方位角分辨率的方法称为合成孔径
此图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。波束宽度的扩大,加上地面距离增加时目标在波束内的时间增加,相互平衡,使得整个扫描带的分辨率保持不变。这种在整个成像带上实现均匀、精细方位角分辨率的方法称为合成孔径
该图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。随着地面距离的增加,波束宽度的扩大,加上目标在波束内的时间增加,相互平衡,从而使整个扫描带的分辨率保持不变。这种在整个成像扫描带上实现均匀、精细的方位角分辨率的方法称为合成孔径
该图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。随着地面距离的增加,波束宽度的扩大,加上目标在波束内的时间增加,相互平衡,从而使整个扫描带的分辨率保持不变。这种在整个成像扫描带上实现均匀、精细的方位角分辨率的方法称为合成孔径
我们提出了一种基于对准表的纠缠光子对来源的量子网络中光学纠缠分布的方案。通过将示意的光子钟形生成与光谱模式转换为与量子记忆的接口相结合,该方案消除了由于源中的多路复用而导致的开关损耗。我们分析了通过卫星和基于地面的记忆的长基线纠缠分布特别具有挑战性的问题的“零添加逐渐多样化”(ZALM)的钟形来源,在此期间,它可以将其他优势释放出来:(i)与较高的频道效应相关的频率η与现实的频率相关的范围相互作用,并与现实的范围相互访问,并在适应性的范围内(II)进行了适应性的Photics(II),并且(II)的PHOTINCINCTIMS(II),并(II),(ii)的Photics(II),并(II),(并在Photistive)上进行了(II),并((记忆 - 即,爱丽丝和鲍勃接收而不是传输 - 纠缠了纠缠率通过o(√η)缩放。基于数值分析,我们估计我们的协议在10 2个旋转Qpin Qubits的内存多路复用下达到> 10 ebit/s的地面距离> 10 2 km,而自旋旋转钟形铃声则超过99%。我们的体系结构提出了一个蓝图,用于在短期内实现全球尺度量子网络。
符号 d tgt 到目标的欧几里德距离(斜距) DC 飞机与图像中心之间的地面半径 DX Y 轴截距与目标之间的地面距离 DY 飞机与 Y 轴截距之间的地面半径 DT 飞机与目标之间的地面半径 F b 机身框架连接到飞机 F c 相机框架连接到相机 F 中心 向心力 F n 北/东/下框架(惯性) g 地球重力加速度 h AGL 目标上方高度(地面以上) h des 所需轨道高度 KD φ 滚转内环微分增益 KD θ 俯仰内环微分增益 KD 外环微分增益 KI h 高度保持积分增益 KP h 高度保持比例增益 KP 外环外环控制器比例增益 KP ˙ ψ 转弯协调器比例增益 KP φ 滚转内环比例增益 KP θ 俯仰内环比例增益 LC 飞机与图像中心之间的斜距 LY 飞机与 Y 轴截距之间的斜距 LT飞机与目标之间的斜距 m 飞机质量 PE 位置向东 PN 位置向北 p 飞机倾斜率 q 飞机俯仰率 r 飞机航向(偏航)率 R 实际轨道半径 ˙ R 实际半径率 R des 所需轨道半径 S x 相机水平分辨率 S y 相机垂直分辨率 t 时间 VA 飞机空速 V CM / e 飞机相对于惯性系的速度 VW / e 风相对于惯性系的速度 V tgt / e 目标相对于惯性系的速度 W 飞机重量 X tgt 目标的 X 坐标 Y tgt 目标的 Y 坐标