近年来,在建立几何与引力与量子纠缠之间的新关系方面取得了重大进展。一个重要的例子是 Ryu-Takayanagi 公式 [1],它在 AdS = CFT 对应关系 [2] 的背景下将共形场论 (CFT) 的纠缠熵与反德西特 (AdS) 空间中极小曲面的面积联系起来。此外,ER¼EPR 猜想 [3] 认为,热场双态 (TFD) 中的纠缠可以通过 AdS 空间中不可穿越虫洞中的测地线全息实现。测地线的长度(横跨 AdS 空间的两个边界)量化了纠缠量 [4]。在更简单的环境中,半经典惠勒虫洞 [5,6] 提供了一个早期的例子。该解的一个重要特征是所涉及的磁场不能以矢量势的形式全局写出。这相当于非精确辛形式,产生量化通量,类似于磁单极子 [7] 。最近,H. Verlinde [8] 通过分析虫洞的配分函数研究了量子力学虫洞的例子。对于具有非精确辛形式的系统,热配分函数变为
沙欣·鲁哈尼个人简介 1957 年 4 月 28 日出生于伊朗德黑兰。已婚,有两个孩子。学校:德黑兰的 Khawrazmi 高中。1974 年至 1977 年在英国坎特伯雷肯特大学就读本科,以一等荣誉毕业。1977 年至 1980 年在英国伦敦帝国理工学院攻读研究生。数学物理学 DIC。理论物理学博士。博士后经历 1980 年至 1982 年爱尔兰都柏林高等研究院英国杜伦大学。1982 年至 1984 年英国伦敦大学学院。1984 年至 1990 年 1990 年至今在伊朗德黑兰沙里夫理工大学工作。现任(隶属于沙里夫大学)伊朗德黑兰微电子研究中心主任。 2015 年至今 荣誉奖 大学学院研究员、ICTP 高级研究员、Khawrazmi 国际奖 研究兴趣 临界现象 - 共形场论 - 进化理论 - 复杂系统 在国际期刊上发表 125 篇文章。其他文章未引用。有关出版物的完整列表,请参阅 S.Rouhani 的 Google 学术论文和引文
物理学中的关键任务之一是进行测量以确定系统的状态。通常,测量的目的是确定物理参数的值,但也可以提出更简单的问题,例如“系统处于状态 A 还是状态 B?”。在量子力学中,后一种类型的测量可以使用量子假设检验的框架进行研究和优化。在许多情况下,人们可以明确地在极限中找到最佳测量,即人们可以同时访问大量 n 个相同的系统副本,并估计 n 变大时的预期误差。有趣的是,误差估计涉及各种量子信息理论量,例如相对熵,从而赋予这些量操作意义。在本文中,我们考虑量子假设检验在量子多体系统和量子场论中的应用。我们回顾了一些必要的背景材料,并详细研究了想要区分的两种状态在参数上接近的情况。相关的误差估计涉及相对熵方差等量,为此我们证明了一个新的不等式。我们探索自旋链和二维共形场论的最优测量策略,重点研究区分子系统的简化密度矩阵。事实证明,最优策略在实践中实施起来有些麻烦,我们讨论了一种可能的替代策略及其相应的误差。
我们考虑无限量子自旋链中连通子系统 A ∪ B ∪ C 的宏观大 3-划分 ( A, B, C ),并研究 R´yi- α 三部分信息 I ( α ) 3 ( A, B, C )。在具有局部哈密顿量的干净一维系统中,在平衡态下它通常为零。一个值得注意的例外是共形临界系统的基态,其中 I ( α ) 3 ( A, B, C ) 是交比 x = | A || C | / [( | A | + | B | )( | C | + | B | )] 的普适函数,其中 | A | 表示 A 的长度。我们确定了不同类的状态,这些状态在具有平移不变哈密顿量的时间演化下,局部放松到具有非零(R´enyi)三部分信息的状态,此外还表现出对 x 的普适依赖性。我们报告了对自由费米子对偶系统中 I ( α ) 3 的数值研究,提出了场论描述,并计算了它们在一般情况下对 α = 2 的渐近行为以及在系统子类中对一般 α 的渐近行为。这使我们能够推断出缩放极限 x → 1 − 中的 I ( α ) 3 的值,我们称之为“残差三部分信息”。如果非零,我们的分析指向一个与 R´enyi 指数 α 无关的通用残差值 − log 2,因此也适用于真正的(冯·诺依曼)三部分信息。
随着量子器件和量子算法的发展,量子计算机可以解决经典计算机难以解决的问题。量子计算机已经成功应用于量子化学、凝聚态物理和格子场论等许多领域(例如参见参考文献 [ 1 – 7 ])。随着量子比特数量的增加和量子器件保真度的提高,我们可以处理更现实的物理模型,探索量子计算机的潜力。作为一个应用示例,本文用量子算法在不同温度下准备 Ising 模型的热态,包括接近临界温度和低温区域的点。为了证明我们方法的可行性,我们将所选物理量的量子模拟结果与经典模拟结果进行了比较。已经提出了许多算法来使量子计算机能够准备热态。这些方法包括量子热动力学方法,其中目标系统与处于平衡状态的溶液耦合 [8];基于热场双态的变分量子算法 [9,10];以及许多量子虚时间演化 (QITE) 算法,例如利用 Hubbard-Stratonovich 变换的算法 [11]、基于变分假设的 QITE (QITE-ansatz) [12]、基于测量的 QITE (QITE-measure) [13],以及通过执行坐标优化的 QITE [14]。我们的研究范围集中在有噪声的中尺度量子 (NISQ) 设备的使用 [15,16]。考虑到量子
例如本文研究的量子相变,我们的格模型必须包含大量的位点 L ≫ 1,因此该张量积的因子数量也是 L 。量子计算机为解决这些大型 Fock 空间提供了一种令人鼓舞的方法,因为它们本质上是以量子力学的方式运行的。事实上,目前人们正在大力努力在量子硬件上模拟相对论量子场论。一类特别重要的问题是规范场论的模拟,因为它们在描述基本粒子物理学中起着至关重要的作用。这些理论包含玻色子自由度,因此必须解决相应的无限局部希尔伯特空间。在[1-5]中可以找到一些针对此类问题的理论算法建议,在[6-9]中进行了实际的硬件实现。不幸的是,我们目前可用的设备不仅受到量子比特数量的限制,更重要的是受到量子计算机固有的高噪声水平的限制。虽然利用量子纠错 (QEC) [ 10 – 12 ] 的容错量子计算机将来可能会被证明是可靠的,但目前还无法在近期的量子设备(称为噪声中尺度量子 (NISQ) 硬件)上实现 QEC。根据我们当前的现实,有必要找出能够让我们从现有技术中提取有用信息的技术。例如,可以应用不同形式的“错误缓解”技术来对抗噪声。这些技术目前正在研究中,已经设计出几种方法来解决量子计算机中一些最常见的重大错误源,包括读出(RO)误差[13-16],也称为测量误差,以及由两量子比特门(如受控非(CNOT)门)引起的退相干[17-19]。更直接的解决方案是实现混合量子-经典算法,从而将量子方面降低到适当平衡其优缺点的水平。另一方面,我们将看到存在这样一种情况,其中哈密顿量的基态是可分解的,用于计算量子相变的经典和量子算法都受益于由此产生的简化。经典地,希尔伯特空间的张量积不再是问题,因为这个问题可以在本地解决。在量子方面,纠缠门的数量以及相关耦合的范围都大大减少。这使得量子电路实际上可以在当今的硬件上实现,即使对于较大的晶格尺寸 L 也是如此。在玻色子场论的情况下,还必须考虑无限局部希尔伯特。虽然我们在调用基于量子比特的架构时总是可以截断这个希尔伯特空间,该架构根据离散变量 (DV) 量子计算运行,用玻色子本身来模拟这些玻色子模式可能更自然。这是在连续变量 (CV) 量子计算中实现的。除了能够访问整个希尔伯特空间外,CV 量子计算机还可以利用更耐退相干的光学元件和状态,并可以使用现有技术有效操纵 [20]。与目前的量子比特设备(如超导芯片或离子阱量子计算机)不同,这种设备未来也可以在室温下通过实验实现 [21]。然而,通用量子计算所需的非高斯门的实现目前尚无定论。
我们展示了三种类型的变换,它们在临界状态下建立了厄米和非厄米量子系统之间的联系,可以用共形场论 (CFT) 来描述。对于同时保留能量和纠缠谱的变换,从纠缠熵的对数缩放中获得的相应中心电荷对于厄米和非厄米系统都是相同的。第二种变换虽然保留了能量谱,但不保留纠缠谱。这导致两种类型的系统具有不同的纠缠熵缩放,并导致不同的中心电荷。我们使用应用于自由费米子情况的膨胀方法来展示这种变换。通过这种方法,我们证明了中心电荷为c = −4的非厄米系统可以映射到中心电荷为c = 2的厄米系统。最后,我们研究了参数为φ →− 1 /φ的斐波那契模型中的伽罗瓦共轭,其中变换既不保持能量谱也不保持纠缠谱。我们从纠缠熵的标度特性证明了斐波那契模型及其伽罗瓦共轭与三临界Ising模型/三态Potts模型和具有负中心电荷的Lee-Yang模型相关联。
Schwinger 模型(1+1 维量子电动力学)是研究量子规范场论的试验平台。我们给出了可扩展的显式数字量子算法来模拟 NISQ 和容错设置中的格子 Schwinger 模型。具体而言,我们使用最近推导的交换子界限对 Schwinger 模型的低阶 Trotter 公式模拟进行了严格分析,并给出了两种情况下模拟所需资源的上限。在格点中,我们发现在 N/2 个物理点上具有耦合常数 x − 1 / 2 和电场截止 x − 1 / 2 Λ 的 Schwinger 模型可以在量子计算机上使用 e O ( N 3 / 2 T 3 / 2 √ x Λ) 中的多个 T 门或 CNOT 进行模拟,时间为 2 xT,操作数为固定算子误差。这种使用截断 Λ 的缩放效果优于量子比特化或 QDRIFT 等算法的预期效果。此外,我们给出了可扩展的测量方案和算法来估计可观测量,这些可观测量在 NISQ 和容错设置中都是通过假设一个简单的目标可观测量(平均对密度)来计算的。最后,我们将通过模拟估计此可观测量的均方根误差限制为理想和实际 CNOT 通道之间的菱形距离的函数。这项工作提供了对模拟 Schwinger 模型的严格分析,同时还提供了可以测试后续模拟算法的基准。
E-ELT 欧洲极大望远镜 EFT 有效场论 EM 电磁 EMRI 极端质量比螺旋 EoS 状态方程 ET 爱因斯坦望远镜 EWPT 电弱相变 FLRW 弗里德曼-勒梅特-罗伯逊-沃克 FOPT 一级相变 GB 银河双星 GW 引力波 GR 广义相对论 IMBBH 中等质量双黑洞 IMS 干涉计量系统 IR 红外线 KAGRA 神冈引力波探测器 KiDS 千度巡天 K CDM 宇宙常数加冷暗物质 LIGO 激光干涉引力波天文台 LISA 激光干涉仪空间天线 LSS 大尺度结构 MBBH 大质量双黑洞 MBH 大质量黑洞 MCMC 马尔可夫链 蒙特卡罗 MHD 磁流体动力学 NG 南部后藤 PBH 原始黑洞 PISN对不稳定超新星 PLS 幂律敏感性 ppE 参数化后爱因斯坦 PTA 脉冲星计时阵列 RD 辐射主导 QCD 量子色动力学 SGWB 随机引力波背景 SKA 平方公里阵列 SM 粒子物理标准模型 SNR 信噪比 SOBH 恒星起源黑洞 SOBBH 恒星起源双黑洞 TDI 时域干涉测量 UV 紫外
量子信息的离域化或扰乱已成为理解孤立量子多体系统中热化的核心要素。最近,通过将不可积系统建模为周期驱动系统,缺乏汉密尔顿图像,而真实的汉密尔顿动力学由于计算限制通常限于小系统规模,在分析上取得了重大进展。在本文中,我们从信息论的角度研究守恒定律(包括能量守恒定律)在热化过程中的作用来解决这个问题。对于一般的不可积模型,我们使用平衡近似来表明,即使系统节省能量,最大量的信息在后期也会被扰乱(以时间演化算子的三部分互信息来衡量)。相反,我们阐明了当系统具有导致光谱退化的额外对称性时,扰乱的信息量必须减少。这一普遍理论在全息共形场论 (CFT) 和 Sachdev-Ye-Kitaev (SYK) 模型的案例研究中得到了体现。由于 1 + 1D CFT 中具有较大的 Virasoro 对称性,我们认为,在某种意义上,这些全息理论并不是最大程度混沌的,这可以通过第二个 Rényi 三分互信息的不饱和明确看出。在 SYK 模型中,粒子空穴和 U ( 1 ) 对称性的作用较弱,因为简并只有两重,我们在大 N 和小 N 时都明确证实了这一点。我们根据局部算子的增长重新解释了算子纠缠,将我们的结果与非时间序相关器所描述的信息扰乱联系起来,从海森堡的角度确定了抑制扰乱的机制。