为了改善天然橡胶的机械,电和热性能,合成并用傅立叶变换红外光谱(FTIR),扫描电子显微镜(SEM)和X射线衍射(XRD)技术合成并表征了氧化石墨烯(RGO)的复合材料。通过改变RGO和橡胶之间的比率,同时保持最终复合材料的恒定重量,从而研究了最佳的RGO。ftir和XRD结果验证了在结果复合材料中存在RGO和自然橡胶,而没有任何结构变化。在橡胶中掺入相对较高的RGO量显示出均匀的分散体。在少数样品中通过SEM在橡胶基质中也观察到了RGO在橡胶基质中的非均匀分散。但是,结果表明,使用RGO和自然橡胶优化组合物制备均相复合材料的可能性。对RGO/橡胶复合材料的探索对于各种应用,包括电子设备,电气设备,电池和电容器,消费产品以及在汽车,航空航天和重型设备行业等行业中都必须进行。此外,该复合材料将是斯里兰卡石墨和橡胶工业的价值。关键字:还原氧化石墨烯;石墨烯;天然橡胶;物质表征。
晶格、自旋和轨道自由度之间的相互作用。[1] 这些晶体可以容纳各种决定其性质的阳离子物种,从而产生不同的电子、磁性和光学行为。[2] 例如,它们的催化活性和性能可受到 A 位和/或 B 位阳离子取代或部分取代的显著影响。[3–6] 在众多用于催化应用的钙钛矿中,Sr 掺杂的镧铁氧体 (La 1 −xSr x FeO 3 ; LSFO) 在光催化水分解方面引起了特别的关注,[7–10] 其中 Fe 作为 B 位过渡金属阳离子驱动选择性氧化。 La 3 +阳离子被氧化态较低的阳离子(即Sr 2 +)取代,导致B阳离子部分氧化为氧化态较高和/或形成氧空位,从而产生更佳的催化活性。[10] 钙钛矿能够容纳多种取代基和掺杂剂,这为其组成和相关氧化态提供了很大的灵活性。这种可调性反过来又使得可以根据各种应用调整钙钛矿的物理化学性质,例如固体氧化物燃料电池(SOFC)中的阴极材料、非均相催化中的催化剂和氧载体、氧分离膜和固态气体传感器。[11]
a. 生成药物适应系的实验设计示意图。通过增加药物浓度(从 1 到 320 μM)对 Kuramochi 细胞系进行挑战。标明了具体剂量和治疗持续时间。从代表性显微镜图像(放大 5 倍,比例尺 = 50 μm)显示了细胞形态。b. 适应系的细胞活力显示了 9 天治疗期间对 olaparib 的反应。剂量范围与生成线所用的剂量范围相同。所有数据点均相对于载体处理的对照(针对每个相应的线)进行了标准化,并代表 3 个独立实验(每个实验 6 个技术重复)的平均值及其各自的标准误差线 (sem)。c. 适应细胞系平均转录组之间的 Spearman 相关性。d. 各个系上的 scRNA-seq 数据的 UMAP 表示。颜色和数字表示由 Louvain 聚类确定的亚群。e.根据适应系中 Spearman 等级相关系数对亚群进行聚类。标明了定义的五种主要转录状态。f. 适应系中五种状态下每个群体的细胞频率。图 1e 中显示的亚群聚类结果基于属于特定亚群的细胞分配到各自的状态。
我专注于在原子层面控制、理解和引导材料特性的整体愿景。这使得能够智能设计和制造具有针对特定应用的属性的材料。我采用多学科方法解决现实世界的问题,结合设计和制造用于有针对性应用的纳米材料的能力,以及先进的光谱工具,以充分了解这些材料的功能。这种方法已被用于在许多领域生成功能性纳米材料,包括:氧化还原液流电池 [ 1 ];用于气体传感的多功能一维金属纳米线阵列 [ 2 ] 和纳米颗粒催化剂 [ 3 ]。在利兹大学,我建立了一个面向工业的研究小组,将这种独特的方法应用于工业挑战,并与许多领域的多家公司合作,包括非均相催化剂的特性和开发、连续纳米颗粒合成以及自动化和高通量制药和农用化学品制造。通过利用连续流平台和自动化,可以利用性能导向优化来以前所未有的效率改进流程,从而缩短开发时间并促进规模扩大。具体来说,从纳米材料的角度来看,这涉及纳米颗粒系统的制造和使用,但这种方法可以用于化学的其他领域,例如制药工艺开发。本次演讲将概述该小组在制造方法和纳米材料系统应用方面取得的一些最新进展。参考文献
对图2的描述黑线和红线表示CSF LEC-PF和整个受试者组中CSF LEC-PF和每个脑脊液标记的Spearman相关系数的95%置信区间(CI)分别在淀粉样蛋白阳性受试者组中。黑色和红点表示Spearman相关系数的中值。黑色和红线之间的巨大差异反映了Aβ阳性或负面状态的显着影响。在此分析中,在所有受试者(黑线)中,CSF LEC-PF与所有测量的生物标志物之间的相关系数,即Aβ42,Aβ42/40比例,P-TAU 181,P-TAU 181,P-TAU 217,TAU 217,TOTAL-TAU和NEUROGROGRANIN,NEUROGRANIN,NEUROGRANIN,NEUROGRANIN,均为0.2或更高的较高的Biors is ass is ass is ass is ass is ass is ass is ass iss sss sss sss and and and and and and and and and and and and and and and and and and and and and and and and and and。在淀粉样蛋白阳性组(红线)中,Spearman相关系数在CSF LEC-PF和CSF总-TAU和0.434和0.434和0.434和CI:0.260-0.581之间的CSF LEC-PF和CSF总tau之间的相关系数为0.634(CI:0.409-0.786)(CI:0.260-0.581)。 LEC-PF和两个生物标志物。另一方面,CSF LEC-PF与大脑Aβ积累生物标志物,CSFAβ42和CSFAβ42/40比率之间的相关性均相对较低。这表明CSF LEC-PF的量与Aβ在大脑中的积累相比,与神经变性更密切相关。
飞机充当高空排放载体,将大量放射性和化学活性物质运送到全球广大地区。这些物质引起的净全球变暖效应占全球气候变化的 3.5%,这是由于人类活动排放造成的 [ 1 ]。虽然二氧化碳 ( CO 2 ) 排放通常被认为是航空引起气候变化的主要因素,但它们只占航空净气候影响的三分之一。其余三分之二的影响归因于反应性非二氧化碳排放,主要是氮氧化物 ( NO x )、水蒸气 ( H 2 O ) 和颗粒物 ( PM )。这些排放物通过化学和微物理过程与周围空气相互作用,导致辐射活性物质的产生和消耗,从而扰乱大气的净能量平衡(例如,NO x 引起的臭氧生成、通过 H 2 O 和 PM 排放产生的凝结尾迹(凝结尾)等)。由于非 CO 2 飞机排放的反应性,气候响应因背景大气的状态(即其化学成分和气象条件)以及排放物释放的时间和年份而异。这意味着航空气候影响在时空上敏感,即在不同时间和/或地点释放的相同排放物可能导致非常不同的大气影响。飞机排放物的扩散发生在很长的距离和时间尺度上,排放物夹带在飞机排气羽流中,在其长达 12 小时的生命周期内扩散数百公里 [ 2 , 3 ]。羽流中存在的排放化学物质浓度升高会导致额外的非线性化学(气相和非均相)和微物理处理,由于固有假设排放瞬时扩散 (ID),这通常不在全球化学模型中得到考虑。
LR6-72HPD-xxxM,xxx= 360 至 385,以 5W 为步长,LR6-72MBD-xxxM,xxx= 360 至 380,以 5W 为步长,LR6-72MPD-xxxM,xxx= 360 至 380,以 5W 为步长,LR4-72HBD-xxxM,xxx= 415 至 455),以 5W 为步长,LR4-72HIBD-xxxM,xxx= 420 至 450,以 5W 为步长,LR6-60BP-xxxM,xxx=290 至 315,以 5W 为步长,LR6-60PD-xxxM,xxx=285 至 305,以 5W 为步长,LR6-60DG-xxxM,xxx=275 至 300,以步长5W 级,LR6-60HBD-xxxM,xxx= 300 至 320,以 5W 为步长,LR6-60HIBD-xxxM,xxx= 300 至 320,以 5W 为步长,LR6-60OPD-xxxM,xxx= 315 至 335,以 5W 为步长,LR6-60HPD-xxxM,xxx= 300 至 320,以 5W 为步长,LR6-60MBD-xxxM,xxx= 300 至 320,以 5W 为步长,LR6-60MPD-xxxM,xxx= 300 至 320,以 5W 为步长,LR4-60HBD-xxxM,xxx= 345 至 380,以 5W 为步长,LR4-60HIBD-xxxM,xxx= 350 至 380,以 5W 为步长,LR6-78HBD-xxxM,xxx= 390 至 420,以 5W 为步长,LR6-78OPD-xxxM,xxx= 410 至 435,以 5W 为步长,LR5-72HBD-xxxM,xxx= 520 至 555,以 5W 为步长,LR5-66HBD-xxxM,xxx= 475 至 505,以 5W 为步长,LR4-78ZBD-xxxM,xxx= 465 至 485,以 5W 为步长,LR5-72HIBD-xxxM,xxx= 520 至 555,以 5W 为步长,LR5-66HIBD-xxxM,xxx= 475 至 505,以 5W 为步长, LR4-78HBD-xxxM,xxx= 470 至 500,步长为 5W,LR5-78HBD-xxxM,xxx= 570 至 590,步长为 5W,LR5-78ZBD-xxxM,xxx= 560 至 580,步长为 5W。注:1. 所有电气数据均相对于标准测试条件 (STC)(1 000 W/m2、(25 ± 2) °C、AM 1,5
聚合物长期以来一直用作绝缘材料。例如,将金属电缆涂在塑料中以使其隔热。但是,到目前为止,已经开发了至少四个主要类别的半导体聚合物。它们包括共轭的导电聚合物,电荷转移聚合物,离子导电聚合物和电导填充的聚合物。首次在1930年首次制作了导电性的导电聚合物,以预防电晕放电。由于其易于处理,良好的环境稳定性和广泛的电气性能,因此将电导填充聚合物的潜在用途倍增。作为一种本质上的多相系统,它们缺乏同质性和可重复性一直是导电填充聚合物的固有弱点。因此,控制分散质量以获得均相导电聚合物复合材料至关重要。1975年离子聚合物中电导率的报告(Wright,1975)引起了相当大的兴趣。从那时起,已经准备了各种从可充电电池到智能窗户的广泛的应用,已经准备好各种离子导电聚合物或聚合物电解质。聚合物电解质也很高。离子传导机制需要相反的离子电荷解离,并且配位位点之间的离子迁移是由聚合物链段的慢运动产生的。因此,聚合物电解质通常显示出低电导率和对湿度的高灵敏度。他们经常在干燥时变成无电。在1950年代(Akamatu等,1954)中发现分子电荷转移(CT)复合物中电导率的发现促进了导电CT聚合物的发展,并导致了与分子CT复合物的超导性发现,1980年(Jerome等人,1980年,1980年)和1986年(1986年)(1986年)(1986年)(iqal)(iqal)(iqal),eqbal(iqal)。CT复合物中的电导率源于
封装在介孔碳 (MC) 中的 Al 掺杂磁铁矿尖晶石纳米粒子被认为是一种有前途的非均相 Fenton 催化剂,可用于实际应用中的连续苯酚降解。在固定床反应器内的工作条件下,制备的 21%γ-Fe 2 O 3 /28%FeAl 2 O 4 @MC 材料中的铁铝尖晶石与 H 2 O 2 发生反应。在该反应中,Al 离子占据了 γ-Fe2O3 组分框架中的空八面体阳离子位,将其转化为 Al 取代的磁铁矿尖晶石。获得的 Fe 3+ 0.66 Fe 2+ 0.33 (Fe 2+ 0.33 Fe 3+ 0.33 Al 3+ 0.33 ) 2 O 4 @MC 中的 Al 通过其路易斯酸特性使铁离子的电子极化,从而使铁离子 (Fe n+(δ+) ) 带上更多的正电荷。这加快了具有挑战性的还原反应 Fe 3+ → Fe 2+ 与 H 2 O 2 生成 HOO˙ 的速度,并加强了尖晶石中铁离子的键合,提高了它们的活性和稳定性。因此,在温和的操作条件下(pH5、40°C、8.6 mlwater/mlcat*h、0.036mol H 2 O 2、200ppm 苯酚),原位生成的催化剂 Fe(Fe 0.66 Al 0.33 ) 2 O 4 @MC 为 35 nm,含有 19.9%Fe 和 2.4%Al,表面积为 335 m 2 /g,在 500 小时的运行中表现出持久的高催化活性和稳定性。在催化性能没有明显变化的情况下,获得了 80% 的 TOC 转化率和处理水中约 1ppm 的浸出 Fe。
摘要 目的 尽管目前的类风湿性关节炎 (RA) 治疗指南建议逐渐减少抗风湿药物 (DMARDs) 的用量,但尚不清楚无 DMARD 缓解 (DFR) 是否是可实现且可持续的结果。因此,我们系统地回顾了文献,以确定 DFR 的患病率和可持续性,并评估了 DFR 的潜在预测因素。 方法 于 2019 年 3 月在多个数据库中进行了系统的文献检索。纳入了所有报告缓解期 RA 患者停用 DMARD 的临床试验和观察性研究。我们的质量评估包括一般评估和对 DFR 描述的评估。总结了 DFR 的患病率及其可持续性以及在逐渐减少 DMARD 期间和停止 DMARD 后的发作。此外,还回顾了实现 DFR 的潜在预测因素。 结果 从 631 篇文章中,纳入了 51 篇,包括 14 项临床试验和 5 项观察性研究。DFR 的定义有所不同,尤其是无 DMARD 状态的持续时间。仅考虑高质量和中等质量的研究,5.0% – 24.3% 的患者实现了 DFR,11.6% – 19.4% 的患者持续 DFR(持续时间 > 12 个月)(均相对于符合减量条件的患者人数)。在 DMARD 减量期间(41.8% – 75.0%)和实现 DFR 后的第一年(10.4% – 11.8%)经常发生发作,而晚期发作(DMARD 停止后 >1 年)并不常见(0.3% – 3.5%)。许多患者特征与 DFR 无关。缺乏自身抗体和共享表位等位基因增加了实现 DFR 的机会。结论 DFR 在 RA 中是可以实现的,并且在 ~10% – 20% 的患者中是可持续的。DFR 可以成为临床试验的重要结果衡量标准,并且需要在定义上保持一致。考虑到停止使用 DMARD 后第一年内疾病发作率较高,建议进行 12 个月以上的无 DMARD 随访以评估可持续性。