本硕士论文由 UNF Digital Commons 的学生奖学金免费提供给您,供您免费访问。它已被 UNF Digital Commons 的授权管理员接受并纳入 UNF 研究生论文和学位论文。有关更多信息,请联系 Digital Projects。© 1990 保留所有权利
摘要 近年来,计算机技术和高等数学的发展使图像处理技术得以广泛应用。图像处理是一种利用数字计算机算法处理图像的多功能方法,其细节甚至比人眼的还要多。由于计算机视觉的进步,各种疾病都可以得到及时发现和治疗。在医学领域,更快的诊断等于更快的治疗过程,因此开发图像增强算法具有非常重要的意义,因为医学图像是在各种条件下生成的。医学图像最常见的问题是对比度低。因此,直方图均衡化是医学领域用于图像增强的最常用技术。由于每张图像都不同,因此应对每张图像使用单独的技术。在本报告中,我们将研究在计算机断层扫描中使用 CLAHE 是否有益处。
摘要。本研究系统地研究了图像增强技术对基于卷积神经网络 (CNN) 的脑肿瘤分割的影响,重点关注直方图均衡化 (HE)、对比度限制自适应直方图均衡化 (CLAHE) 及其混合变体。该研究在 3064 张脑 MRI 图像的数据集上采用 U-Net 架构,深入研究了预处理步骤,包括调整大小和增强,以优化分割精度。对基于 CNN 的 U-Net 架构、训练和验证过程进行了详细分析。利用准确度、损失、MSE、IoU 和 DSC 等指标进行的比较分析表明,混合方法 CLAHE-HE 始终优于其他方法。结果突出了其卓越的准确度(训练、测试和验证分别为 0.9982、0.9939、0.9936)和强大的分割重叠,Jaccard 值为 0.9862、0.9847 和 0.9864,Dice 值为 0.993、0.9923 和 0.9932,强调了其在神经肿瘤学应用中的潜力。研究最后呼吁改进分割方法,以进一步提高神经肿瘤学的诊断精度和治疗计划。
图像增强(点处理):图像负片、阈值处理、有背景和无背景的灰度切片、幂律和对数变换、对比度拉伸、直方图均衡化和直方图规范空间域图像增强(邻域处理):用于图像增强的低通和高通滤波、空间滤波基础、生成空间滤波器掩模 - 平滑和锐化空间滤波图像变换:一维 DFT、二维离散傅里叶变换及其逆变换、二维 DFT 的一些属性、沃尔什-哈达玛、离散余弦变换、哈尔变换、倾斜变换频域图像增强:频域滤波基础、平滑和锐化频域滤波器
脑肿瘤检测和监测对于任何指示系统都至关重要,多年的研究和诊断技术的稳步改进就是明证。因此,治疗计划对于提高患者的生活质量至关重要。有一种观点认为,深度学习可以帮助解决诊断和治疗脑肿瘤的困难。在这项工作中,我们引入了一种混合深度神经网络,它将最先进的图像增强方法(如对比度拉伸、直方图均衡化和对数变换)与迁移学习相结合,类似于 DenseNet169 和 ResNet149。这项工作深入探讨了如何提高 DCNN 预测的准确性和效率。对于数据选择,我们创建了自定义数据,这些数据来自 Br35H 和 Fig 共享存储库,其中包含增强后的良性、恶性和正常图像 (596,928,364)。性能分析了不同的场景,例如所有三种增强算法的数据都与每个神经网络一起训练并评估性能。性能结果表明,本文提出的研究成果对使用 DenseNet169 进行直方图均衡化的数据有显著的改进,准确率为 93.29%,精确率为 94%,召回率为 88%,得分率为 93%,损失率为 20.37%,是本文提出的所有训练神经网络中最高的矩阵。
摘要 - 本文重点介绍一种从卫星图像中快速提取建筑物边界的自动算法,并对双边滤波器 (BF) 和自适应双边滤波器 (ABF) 进行了实验比较。研究和实验结果证明,ABF 的结果比 BF 的结果好得多。ABF 产生的结果比 BF 更有希望。旧的和传统的建筑物边界提取模型非常复杂且耗时。所提出的建筑物边界提取程序包括三个主要阶段:(1)使用自适应双边滤波器进行边缘保留和平滑,(2)使用 ED Line 算法检测线段,(3)使用感知分组技术识别多边形建筑物边界。我们提出的算法在 HR(高分辨率)Quick Bird 卫星图像上进行了测试,获得的结果很有希望并且几乎是实时的。因此,实验结果足够有用,总体准确率为 88.24%,这对于进一步了解建筑物边界的图像以及在实时环境中识别目标来说足够准确,并且有助于解决早期识别未经授权和非法建筑物的问题。关键词:Quick Bird 卫星图像、自适应双边滤波器(ABF)、双边滤波器、高分辨率卫星图像、直方图均衡化、ED 线检测器算法、建筑物边界提取。
本研究重点关注从移植烧伤标本中进行医学图像检索时烧伤评估这一重大困难,特别是在资源受限的情况下,需要快速而准确的诊断。我们的解决方案将复杂的机器学习技术(即人工神经网络 (ANN))与图像修复系统中的对比度限制自适应直方图均衡化 (CLAHE) 算法相结合。与查询图像 (𝐾 query = 131 . 17 ) 相比,峰度值 (𝐾 CLAHE = 144 . 83 ) 的统计评估表明,CLAHE 图像中的分布具有更明显的尾部,从而增强了特定的图像特征。此外,CLAHE 图像中偏度的增加 (𝑆 CLAHE = 5 . 92 ) 表明与查询图像 (𝑆 query = 4 . 47 ) 相比,强度水平向更高强度的转变,进一步增强了可辨别的图像特征。通过这种结合,我们可以小心地保留图片边界,增强局部对比度,并最大限度地降低噪音,从而提高烧伤诊断的准确性。统计分析(例如峰度和偏度分析)验证了可见图片方面的改进,为基本纹理属性提供了重要的见解。我们使用 Bhattacharya 系数和独特的 bin 分析提高了图片检索效率,从而显著提高了匹配图像的检索分数。ANN 成功区分了需要移植的照片和不需要移植的照片,为急性烧伤提供了快速准确的诊断。这种综合技术大大提高了烧伤诊断水平,尤其是在紧急情况下,并有望改善医疗程序。我们的研究通过结合自动评估工具、强大的图像处理方法和机器学习,有助于提高困难医疗情况下的患者护理标准。
摘要 - 本研究提出了一个强大的脑肿瘤分类框架,首先是对 233 名患者的细致数据整理。该数据集包含各种 T1 加权对比增强图像,涵盖脑膜瘤、神经胶质瘤和垂体瘤类型。采用严格的组织、预处理和增强技术来优化模型训练。所提出的自适应模型采用了一种尖端算法,利用了自适应对比度限制直方图均衡化 (CLAHE) 和自适应空间注意。CLAHE 通过根据每个区域的独特特征调整对比度来增强灰度图像。通过注意层实现的自适应空间注意动态地为空间位置分配权重,从而增强对关键大脑区域的敏感性。该模型架构集成了迁移学习模型,包括 DenseNet169、DenseNet201、ResNet152 和 InceptionResNetV2,从而提高了其稳健性。 DenseNet169 充当特征提取器,通过预训练权重捕获分层特征。批量归一化、dropout、层归一化和自适应学习率策略等组件进一步丰富了模型的适应性,减轻了过度拟合并在训练期间动态调整学习率。技术细节(包括使用 Adam 优化器和 softmax 激活函数)强调了模型的优化和多类分类能力。所提出的模型融合了迁移学习和自适应机制,成为医学成像中脑肿瘤检测和分类的有力工具。它对脑肿瘤图像的细致理解,通过自适应注意力机制的促进,使其成为神经成像计算机辅助诊断的一项有希望的进步。该模型利用具有自适应机制的 DenseNet201,超越了以前的方法,实现了 94.85% 的准确率、95.16% 的精确率和 94.60% 的召回率,展示了其在具有挑战性的医学图像分析领域提高准确率和泛化的潜力。关键词:NeuroInsight、脑肿瘤分类、医学影像、自适应深度学习、自适应框架。1. 简介通过整合最先进的技术,特别是在深度学习领域,医学诊断领域经历了前所未有的进步。这一进步的一个显著例子是使用自适应深度学习进行脑肿瘤分期分类,这是一种新颖的方法,它不仅利用了深度学习的能力,而且还能动态适应脑肿瘤分期固有的复杂性,在诊断中呈现出更高的精确度和个性化水平。在医疗保健领域,脑肿瘤因其表现形式多样、严重程度各异而成为一项艰巨的挑战。传统的肿瘤分类方法经常难以准确描述肿瘤分期的细微细节。在此背景下引入自适应深度学习标志着一种范式转变,它赋予诊断过程一种自学习机制,该机制会随着遇到的每个数据集不断发展和完善自身[1] – [4]。这种开创性方法的基础要素是一种先进的深度学习算法,其特点是动态和自适应性。自适应深度学习方法与典型的深度学习模型不同,它不断修改其参数以响应输入数据的独特特征,而不是依赖于固定的、预定的架构。这种自适应能力确保了对与脑肿瘤分期相关的复杂性的更细致入微和针对具体情况的理解[5] – [7]。