图1。开发IPNF95.11b异种移植分析。 a)代表性的H&E(上),S100 [(Schwann细胞标记)(中间)]和ku80 [((人为特定标记)(底部)(底部)]以及植入IPNF95.11b细胞(第一列)的NCG小鼠的坐骨神经的免疫组织学,NO(2 nd列)ipn列(2 nd列)ipn2.3 2.3列(3列2.3列(3rd列)(3rd列)(3rd列(3rd列)(3rd列(3RD列)(3rd列)(3rd列(3rd列)(3rd列)(3rd列(3rd列)(3rd列)(3rd列(3rd列)(3rd列(3rd列)(3rd列(3rd列)(3rd列)(3rd列(3rd列2)并在三个月后收获。 比例尺等于100 µm。 b)实验在A(每个条件n = 4个坐骨神经)中的肿瘤渗透率。 c)条形图在NCG(n = 5坐骨神经)和裸鼠(n = 6个坐骨神经)1个月中比较IPNF95.11b异种移植测定法的肿瘤渗透率。 fischer精确t检验用于测量统计显着性(*平均值P≤0.05)。 ns意味着非显着。开发IPNF95.11b异种移植分析。a)代表性的H&E(上),S100 [(Schwann细胞标记)(中间)]和ku80 [((人为特定标记)(底部)(底部)]以及植入IPNF95.11b细胞(第一列)的NCG小鼠的坐骨神经的免疫组织学,NO(2 nd列)ipn列(2 nd列)ipn2.3 2.3列(3列2.3列(3rd列)(3rd列)(3rd列(3rd列)(3rd列(3RD列)(3rd列)(3rd列(3rd列)(3rd列)(3rd列(3rd列)(3rd列)(3rd列(3rd列)(3rd列(3rd列)(3rd列(3rd列)(3rd列)(3rd列(3rd列2)并在三个月后收获。比例尺等于100 µm。b)实验在A(每个条件n = 4个坐骨神经)中的肿瘤渗透率。c)条形图在NCG(n = 5坐骨神经)和裸鼠(n = 6个坐骨神经)1个月中比较IPNF95.11b异种移植测定法的肿瘤渗透率。fischer精确t检验用于测量统计显着性(*平均值P≤0.05)。ns意味着非显着。
在横切损伤中,外周神经的退化变化发生在损伤的两侧,从而观察到部分或完全的感觉/运动损失(8,22,43,47)。在周围神经损伤后,近端段发生退化性变化,远端段发生沃勒(Wallerian)变性(30)。病理生理的变化,例如凋亡,氧化应激,炎症,细胞外基质的破坏以及其他几个事件可能会使周围神经损伤(PNI)的损害程度恶化(29,48,49,49,52);但是,这些复杂的过程在每个阶段都可以破坏以防止伤害后再生。尽管已经开发了针对这些过程的几种手术和医学方法,但可以保证PNI的功能恢复的治疗方法尚未发现(8,30,43,47)。
背景:神经外接口是侵入性最小的周围神经接口之一,因为它们位于神经外部。然而,与侵入性更强的接口相比,这些电极可能存在选择性和灵敏度较低的问题,因为目标神经纤维与电极的距离更远。新方法:通过微加工技术实现了溶解和吸引接口 (LACE),并旨在提高选择性和灵敏度,同时保持接口格式。它的工程设计在之前的工作中有所描述。LACE 是一种集成了微电极和微流体通道的混合接口。最终目标是通过微通道局部输送 (1) 溶解剂以去除将电极与神经纤维分开的结缔组织,和 (2) 神经营养因子以促进暴露的神经纤维轴突发芽到嵌入电极的微流体通道中,从而提高束状选择性和灵敏度。在这里,我们重点展示微流体和微电极在急性准备中的体内功能,其中我们评估局部去除结缔组织并用微通道嵌入微电极记录和刺激大鼠坐骨神经神经活动的能力。与现有方法的比较:虽然神经外接口优先考虑神经健康,而神经内接口优先考虑功能,但 LACE 代表了一种新的神经外方法,它可能在两个目标上都表现出色。结果:手术植入显示经过小心和最少的操作后,LACE 功能得以保留。体内电评估表明放置在微流体通道内的微电极能够成功刺激和记录来自大鼠坐骨神经的复合动作电位。此外,通过微通道输注胶原酶后,富含胶原的神经外膜被局部去除,并通过显微镜确认。结论:在对大鼠坐骨神经进行的急性实验中证明了使用集成微电极和微流体的cuffi来刺激、记录和输送药物以局部溶解神经外膜层的可行性。
背景:治疗长距离外周神经损伤(PNI)仍然是一个重大的临床问题。基于石墨烯的支架具有细胞外基质(ECM)的特征,并且可以进行电信号,因此已研究用于修复PNI。结合电刺激(ES),应期望井的性能。我们旨在确定还原氧化石墨烯纤维(RGOF)与ES在体内对PNI修复的影响。方法:RGOF是通过一步限制的热液策略(DCH)制备的。表面特性,化学成分,样品的电气和机械性能。在体外和体内都系统地探索了RGOF的生物相容性。总共将54只Sprague-Dawley(SD)大鼠随机分为6个实验组:硅胶导管,S+ES,S+RGOFS填充管道(SGC),SGC+ES,神经自体移植物和SHAM组,用于10毫米Sciaticic缺陷。在每组SD大鼠手术后12周时在手术后再生坐骨神经的功能和组织学恢复。 结果:RGOF表现出具有出色的机械和电性能的对齐的微通道和纳米通道。 它们在体外和体内都是生物成绩。 鉴于神经系统和形态恢复,所有6组均表现出PNI修复结果。 SGC +ES组达到了与神经自体移植类相似的治疗作用(P> 0.05),其表现明显优于其他治疗组。 结论:RGOF具有良好的生物相容性与出色的电气和机械性能相结合。在每组SD大鼠手术后12周时在手术后再生坐骨神经的功能和组织学恢复。结果:RGOF表现出具有出色的机械和电性能的对齐的微通道和纳米通道。它们在体外和体内都是生物成绩。鉴于神经系统和形态恢复,所有6组均表现出PNI修复结果。SGC +ES组达到了与神经自体移植类相似的治疗作用(P> 0.05),其表现明显优于其他治疗组。结论:RGOF具有良好的生物相容性与出色的电气和机械性能相结合。免疫组织化学分析表明,在SGC+ES中,与轴突再生和血管生成相关的蛋白质的表达相对较高。与ES结合,RGOF在鼠急性伸长损伤模型中为10毫米神经间隙提供了上等运动神经恢复,表明其出色的修复能力。与自体神经移植相似的治疗作用使我们相信这种方法是治疗周围神经缺陷的一种有希望的方法,预计将来将指导临床实践。关键字:周围神经缺陷,坐骨神经损伤,功能恢复,组织工程,导电材料
我们提出了一种用于电刺激周围神经的无线、完全可植入设备,该设备由供电线圈、调谐网络、齐纳二极管、可选刺激参数和刺激器 IC 组成,全部封装在生物相容性硅胶中。13.56 MHz 的无线射频信号通过片上整流器为植入物供电。ASIC 采用台积电的 180 nm MS RF G 工艺设计,占地面积不到 1.2 平方毫米。该 IC 通过片上只读存储器实现外部可选的电流控制刺激,具有 32 个刺激参数(90 – 750 μA 幅度、100 μs 或 1 ms 脉冲宽度、15 或 50 Hz 频率)。IC 使用 8 位二进制加权 DAC 和 H 桥生成恒定电流波形。在最耗电的刺激参数下,刺激脉冲期间的平均功耗为 2.6 mW,电能传输效率约为 5.2%。除了台式和急性测试外,我们还在两只大鼠的坐骨神经上长期植入了两种版本的设备(一种是带导线的设计和一种是无导线的设计),以验证 IC 和整个系统的长期疗效。无导线设备的尺寸如下:高 0.45 厘米,长轴 1.85 厘米,短轴 1.34 厘米,带导线的设备尺寸类似
mikroglia是大脑的免疫细胞。在其核心角色中,他们不仅负责捍卫大脑,而且还负责维持其正常功能。不同的任务范围从养分的供应到组织的修复。mikroglia似乎也参与了阿尔茨海默氏症,帕金森氏症或多发性硬化症等神经系统疾病的发展。到目前为止,不同的细胞类型的作用很难检查,因为小胶质细胞和大脑中的其他髓质免疫细胞通常仅由于其相似性而同时观看。在博士学位期间,卢卡斯·阿曼(Lukas Amann)直接检查了小胶质细胞,并确定了hexb(己糖胺酶亚基β)为稳定的小胶质细胞核心。通过识别仅在小胶质细胞中发生的遗传特征,卢卡斯·阿曼(Lukas Amann)能够通过CRISPR/CAS9系统建立新的转基因小鼠模型。使用这些可以关闭或发光小胶质细胞。新过程现在启用,例如在神经元疾病中,检查大脑中不同免疫细胞的特定贡献,并且在全球范围内可用。将来,小胶质细胞有针对性变化的可能性将在将来开放新的特定疗法方法。此外,卢卡斯·阿曼(Lukas Amann)研究了与周围神经系统,即所谓的坐骨神经巨噬细胞(SCMAC)相关的髓细胞群体。他可以证明SNMAC与中枢神经系统Microglia的巨噬细胞不同。卢卡斯·阿曼(Lukas Amann)的结果在自然免疫学和自然神经科学出版物中发表,他是他的同事。
第三剂:14 周 来源:WHO/IAP 推荐的免疫接种时间表。 应在 15-18 个月大时接种 DTP 和 Hib 加强剂量。 应在 5 岁时(即入学时)接种 DTP 加强剂量。 接种 使用前应轻轻摇晃液体疫苗瓶以使悬浮液均质化。 疫苗应肌肉注射。请勿皮下或静脉注射。大腿前外侧是首选注射部位,对于年龄较大的儿童,则为三角肌。注射到儿童臀部可能会损伤坐骨神经,并且该部位的吸收可能不稳定。因此,不建议在该部位接种任何疫苗。不得注射到皮肤中,因为这可能会引起局部反应。注射时必须使用无菌注射器和无菌针头。注射部位必须用浸泡在蒸馏酒精中的棉花消毒,注射前应让其蒸发。如果与 Vaxtar-5™ 疫苗同时注射,则应在不同部位注射另一针。每次注射只能使用无菌针头和注射器。打开后,多剂量小瓶应保存在 +2°C 至 +8°C 之间。在免疫期间已从中取出一剂或多剂疫苗的多剂量 Vaxtar-5™ 疫苗小瓶可在后续免疫期间使用,最长 6 小时,前提是满足以下所有条件。未超过有效期。疫苗储存在适当的冷链条件下。疫苗小瓶隔膜未浸入水中。已使用无菌技术取出剂量。
抽象周围神经系统(PNS)和中枢神经系统(CNS)啮齿动物髓素(由不同的细胞类型产生)具有共同的形态和功能特征,尽管它们的主要积分膜蛋白是完全不同的。两种类型的髓磷脂how- ever,包含四种髓磷脂碱性蛋白(Mbps),它们具有相似的免疫化学和电泳特性。我们已经分离并表征了与大鼠mRNA相对应的cDNA克隆,这些cNS和PNS髓磷脂中发现的小Mbps(SMBP)。对这些克隆的序列分析表明,神经系统的两个分裂中的SMBP均由相同的核苷酸序列编码,这表明它们是在少突胶质细胞和Schwann细胞中表达的相同基因的产物。与CNS SMBP cDNA作为探针中的点印刷杂交实验,结果表明,在CNS髓磷脂中,MBP mRNA水平高20倍,而总脑干mRNA中的MBP mRNA水平高20倍。还发现,在含有少突drocytes和schwann细胞的视神经和坐骨神经中,MBP mRNA的水平分别高(分别为4倍和2倍)。印迹杂交实验表明,源自大鼠SMBP cDNA的编码区域的探针杂交与人视神经中存在的同源mRNA(= 2.6千行酶),该探针无法检测到从3'未转移的区域中得出的探针。这种编码区域序列的保守性与两种物种中MBP报告的高度同质氨基酸序列一致。
div dyt-tor1a肌张力障碍是最常见的单基质肌张力障碍,其特征是非自愿性肌肉收缩和缺乏治疗选择。尽管对其病因有所了解,但该疾病的病理生理学仍不清楚。降低了约30%的渗透率,表明需要开发dys滋补表型。为了系统地研究这一假设,我们在遗传性易感的Dyt-Tor1a小鼠模型(DYT1KI)中诱导了坐骨神经挤压损伤,以唤起肌张力型表型。随后,我们采用了一种多词方法来发现可能导致这种情况的新型病理生理途径。使用对肌张力型表型的公正基于深度学习的表征表明,与天真的dyt1ki动物相比,神经受伤的dyt1ki动物表现出明显更多的类肌张力障碍运动(DLM)。该发现早在手术程序后两周就很明显。更重要的是,与神经受损的野生型(WT)动物相比,受伤后6周,神经受伤的Dyt1ki小鼠的DLM明显高。在神经损害的WT小鼠的小脑中,多摩尼克分析指向翻译相关过程中的调节。这些观察结果不是在神经受伤的dyt1ki小鼠的小脑中进行的;取而代之的是,它们位于皮质和纹状体上。我们的发现表明表现出DLM的表型Dyt1ki小鼠小脑中的翻译补偿机制失败,而皮层和纹状体中的翻译失调可能会促进肌张力障碍表型。