算法:改进了数据加载部分,在数据准备技术中添加了块编码,并在算法中添加了半经典 QFT。改进了 Shor 整数分解算法和 QPE 算法的解释。添加了一个表格,总结了 Shor 整数分解、Shor 离散对数和量子相位估计算法之间的差异。更新了 NISQ 部分,考虑到 IBM 和 Quantinuum QPU 在量子比特保真度方面的最新进展。更好地解释了 DAQC 计算范式。添加了一个图表,定位了解决组合优化问题的经典和量子方法。在复杂性类部分中添加了一些复杂性类:FP、PostBQP。FPTAS、PTAS、APX 和 NPO。更新了一些图表并创建了新的图表。
高维分数阶反应扩散方程在生物学、化学和物理学领域有着广泛的应用,并表现出一系列丰富的现象。虽然经典算法在空间维度上具有指数复杂度,但量子计算机可以产生仅具有多项式复杂度的量子态来编码解决方案,前提是存在合适的输入访问。在这项工作中,我们研究了具有周期性边界条件的线性和非线性分数阶反应扩散方程的高效量子算法。对于线性方程,我们分析和比较了各种方法的复杂性,包括二阶 Trotter 公式、时间推进法和截断 Dyson 级数法。我们还提出了一种新算法,该算法将汉密尔顿模拟技术与交互图像形式相结合,从而在空间维度上实现最佳缩放。对于非线性方程,我们采用 Carleman 线性化方法,并提出了一种适用于分数阶反应扩散方程空间离散化产生的密集矩阵的块编码版本。
在经典迭代线性系统求解器中,预处理是处理病态线性系统最广泛和最有效的方法。我们引入了一种称为快速求逆的量子原语,可用作求解量子线性系统的预处理器。快速求逆的关键思想是通过量子电路直接对矩阵求逆进行块编码,该电路通过经典算法实现特征值的求逆。我们展示了预处理线性系统求解器在计算量子多体系统的单粒子格林函数中的应用,该函数广泛用于量子物理、化学和材料科学。我们分析了三种情况下的复杂性:哈伯德模型、平面波对偶基中的量子多体哈密顿量和施温格模型。我们还提供了一种在固定粒子流形内进行二次量化格林函数计算的方法,并指出这种方法可能对更广泛的模拟有价值。除了求解线性系统之外,快速求逆还使我们能够开发用于计算矩阵函数的快速算法,例如高效准备吉布斯态。我们分别基于轮廓积分公式和逆变换介绍了两种高效的此类任务方法。
用于解决量子线性系统 (QLS) 问题的量子算法是近年来研究最多的量子算法之一,其潜在应用包括解决计算上难以解决的微分方程和提高机器学习的速度。决定 QLS 求解器效率的一个基本参数是 κ,即系数矩阵 A 的条件数,因为自从 QLS 问题诞生以来,我们就知道,在最坏情况下,运行时间至少与 κ 呈线性关系 [1]。然而,对于正定矩阵的情况,经典算法可以求解线性系统,运行时间扩展为 √κ,与不确定的情况相比,这是一个二次改进。因此,很自然地会问 QLS 求解器是否可以获得类似的改进。在本文中,我们给出了否定的答案,表明当 A 为正定时,求解 QLS 也需要与 κ 呈线性关系的运行时间。然后,我们确定了可以规避此下限的正定 QLS 的广泛类别,并提出了两种新的量子算法,其特点是 κ 的二次加速:第一种基于有效实现 A − 1 的矩阵块编码,第二种构建形式为 A = LL † 的分解来预处理系统。这些方法适用范围广泛,并且都允许有效地解决 BQP 完全问题。
一个用于 S α ( ρ ) 的量子估计器,当 0 < α < 1 时,时间复杂度为 e O ( N 4 /α − 2 ),当 α > 1 时,时间复杂度为 e O ( N 4 − 2 /α ),改进了之前由 Acharya、Issa、Shende 和 Wagner (2020) 提出的用于 0 < α < 1 时的最佳时间复杂度 e O ( N 6 /α ) 和用于 α > 1 时的最佳时间复杂度 e O ( N 6 ),尽管样本复杂度会略有增加。此外,这些估计器可以自然扩展到低秩情况。我们还提供了用于估计 S α ( ρ ) 的样本下限 Ω(max { N/ε, N 1 /α − 1 /ε 1 /α })。从技术上讲,我们的方法与以前基于弱 Schur 采样和杨氏图的方法有很大不同。我们构建的核心是一种名为 samplizer 的新工具,它可以仅使用量子态样本将量子查询算法“采样”为具有类似行为的量子算法;这表明了一个估计量子熵的统一框架。具体来说,当量子预言机 U 对混合量子态 ρ 进行块编码时,任何使用 Q 个 U 查询的量子查询算法都可以使用 e Θ ( Q 2 /δ ) 个 ρ 样本采样为 δ 接近(在钻石范数中)的量子算法。此外,这种采样被证明是最优的,最多可达多对数因子。
摘要 - 在经典的损失源编码问题中,一个编码长的源符号块,使扭曲能够接近最终的香农限制。这种块编码方法引入了较大的延迟,这在许多延迟敏感的应用中是不可取的。我们考虑零延迟情况,其中的目标是在没有任何延迟的情况下编码和解码有限的Alphabet Markov源。已经表明,这个问题将自己适合随机控制技术,从而导致存在,结构和一般的结构近似结果。但是,到目前为止,这些技术仅导致了代码设计的计算算法实现。为了解决这个问题,我们提出了一种可实现的强化学习设计算法,并严格证明其渐近最佳性。特别是,我们表明可以使用量化的Q学习算法来获得此问题的近乎最佳的编码策略。证明是基于量化Q学习的最新结果的基础,该Q学习是针对弱伙伴控制的马尔可夫链,其应用需要开发有关规律性和稳定性属性的技术结果,并将最佳解决方案与折扣和平均成本无限的地平线标准问题联系起来。这些理论结果由模拟支持。
本信重点关注估计纯态 | ψ ⟩ 的多个可观测量的期望值的任务。在状态准备成本为主导因素的环境中,我们主要量化 Oracle 模型中所需的资源,在该模型中我们计算对状态准备幺正及其逆的调用次数。为了为该成本模型和一般任务提供具体的动机,考虑以下示例,其中我们感兴趣的状态是 Jordan-Wigner 变换下某些二阶量子化电子结构哈密顿量的未知基态。在这种情况下,状态准备步骤预计在某些假设下是可处理的,但相对昂贵,即使使用现代方法(例如,通过应用参考文献 1、2 的基态准备算法结合最先进的哈密顿量块编码技术 [ 3、4 ])。同时,感兴趣的可观测量可能特别简单(例如,费米子约化密度矩阵的元素)。在补充信息第 VI 部分中,我们讨论了状态准备成本不一定占主导地位的情况,以及在我们的方法背景下可能存在的权衡。令 U ψ 表示从 | 0 ⟩ 状态准备 | ψ ⟩ 的幺正态,令 { O j } 为 M 个 Hermitian 算子的集合。为了简化与现有方法的比较,我们在本节中做出额外假设,即 O j 也是幺正态,尽管可以使用基于块编码的技术放宽这一要求 [ 5 ]。与正文一样,我们的目标是尽量减少对 U ψ 和 U † ψ 的调用次数,以获得 M 个期望值 ⟨ ψ | O j | ψ ⟩ 的估计 eoj,使得
我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依熵、量子 R´enyi 熵、迹距离和保真度。所提出的算法在低秩情况下的表现明显优于之前的最佳算法(甚至是量子算法),其中一些算法实现了指数级加速。具体来说,对于秩为 r 的 N 维量子态,我们提出的用于计算加性误差 ε 内的冯·诺依曼熵、迹距离和保真度的量子算法的时间复杂度分别为 ˜ O ( r/ε 2 )、˜ O ( r 5 /ε 6 ) 和 ˜ O ( r 6 . 5 /ε 7 . 5 )。相比之下,先前的冯诺依曼熵和迹距离的量子算法通常具有时间复杂度 Ω( N ),而先前的最佳保真度算法具有时间复杂度 ˜ O ( r 12 . 5 /ε 13 . 5 )。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。这是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。与现有方法相比,我们的技术的优势在于不需要对密度算子进行任何限制;与此形成鲜明对比的是,以前的方法通常需要对密度算子的最小非零特征值有一个下限。
推荐书籍: [1] Wai-Kai Chen,“VLSI 技术(工程原理与应用)”,CRC press,2003,第 1 版,ISBN:978-0849317385。 [2] Kwyro Lee、Michael shur、Tor A. Fjeldly 和 Tron Ytterdal,“VLSI 的半导体器件建模”,Prentice Hall,1997,第 1 版,ISBN:978-0138056568。 ECE 505:高级数字通信 学分:2.00 学习时间:2 小时/周 概率与随机过程回顾。无记忆信道上的功率谱与通信:同步数据脉冲流的 PSD、M 元马尔可夫源、卷积编码调制、连续相位调制、无记忆信道上的标量和矢量通信、检测标准。相干和非相干通信:相干接收器、WGN 中的最佳接收器、IQ 调制和解调、随机相位信道中的非相干接收器、M-FSK 接收器、瑞利和莱斯信道、部分相干接收器 – DPSK、M-PSK、M-DPSK、BER 性能分析。带限信道和数字调制:眼图、存在 ISI 和 AWGN 时的解调、均衡技术、IQ 调制、QPSK、O/4-QPSK、QAM、QBOM、BER 性能分析、连续相位调制、CPFM、CPFSK、MSK、OFDM。块编码数字通信:结构和性能、二进制块码、正交、双正交、超正交-香农信道编码定理、信道容量、匹配滤波器、扩频通信概念、编码 BPSK 和 DPSK 解调器、线性块码、汉明、戈莱、循环、BCH、里德-所罗门码。卷积编码数字通信:使用多项式、状态图、树形图和网格图表示代码,使用最大似然、维特比算法、顺序和阈值方法的解码技术 - BPSK 和维特比算法的误差概率性能。
b'我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依曼熵、量子 R\xc2\xb4enyi 熵、迹距离和 \xef\xac\x81delity。所提出的算法在低秩情况下的表现明显优于最知名的(甚至是量子的)算法,其中一些算法实现了指数级加速。特别是,对于秩为 r 的 N 维量子态,我们提出的用于计算冯·诺依曼熵、迹距离和 \xef\xac\x81delity(加性误差 \xce\xb5 内)的量子算法的时间复杂度为 \xcb\x9c O r 2 /\xce\xb5 2 、 \xcb\x9c O r 5 /\xce\xb5 6 和 \xcb\x9c O r 6 。 5 /\xce\xb5 7 . 5 1 。相比之下,已知的冯·诺依曼熵和迹距离算法需要量子时间复杂度为 \xe2\x84\xa6( N ) [AISW19,GL20,GHS21],而最著名的 \xef\xac\x81delity 算法需要 \xcb\x9c O r 21 . 5 /\xce\xb5 23 . 5 [WZC + 21]。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。它是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。特别是,我们基于强大的量子奇异值变换(QSVT)[GSLW19],引入了一种用于密度算子及其(非整数)正幂的特征值变换的新技术。我们的技术相对于现有方法的优势在于,不需要对密度算子进行任何限制;与之形成鲜明对比的是,以前的方法通常需要密度算子的最小非零特征值的下限。此外,我们还提供了一些独立感兴趣的技术,用于(次规范化)密度算子的迹估计、线性组合和特征值阈值投影仪,我们相信这些技术在其他量子算法中会很有用。'