摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现总体精度方面的性能相似,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度会影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在一般精度方面具有相似的性能,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多级 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
SRTM 取得了绝对的成功。美国 C 波段雷达对 99.9% 以上的目标陆地至少进行了一次成像,对 95% 的陆地至少进行了两次成像,对 50% 以上的陆地至少进行了三次成像。不同有利位置的额外覆盖可以填补阴影区域并提高最终地图的垂直分辨率。NGA DEM 规范要求在 90% 的水平上相对于地球中心的垂直误差绝对小于 16 米,数据点在纬度和经度上每隔一弧秒间隔。NGA、美国地质调查局 (USGS)、SRTM 项目和独立调查人员的性能评估表明,在植被稀疏的地区,这些误差通常小于 8 米(Rodriguez 等人,2006 年;Carabajal 和 Harding,2005 年;Carabajal 和 Harding,2006 年)。高度纹波误差校正讨论中提供了额外的 SRTM 数据详细信息(第 4.2.2.1 节)。
图3:检索EPP特性。(a)激子 - 平面极性子在金上沉积的13 nm厚的WSE 2的分散关系。colormap显示了反射系数的虚构部分,该部分用TMM计算。带有误差条的白线对应于从数据中提取的实验波形。垂直误差条对应于入射激光器的线宽,水平误差条是峰位置上的不确定性。使用TMM计算的理论分散关系的橙色线。红色虚线表示空气中的光线,水平虚线WSE 2的A-Exciton的能量,而蓝色虚线则在没有A-Exciton的情况下将样品的分散体。(b)与耦合振荡器模型(COM)相比,EPP的分散关系。两个极化分支以紫色绘制,实验波形为黑色。(c)实验性(黑色曲线)和理论(橙色曲线)的传播长度。水平误差条对应于拟合的不确定性。(d)使用Munkhbat等人的WSE 2介电函数计算出13 nm厚的WSE 2对黄金的反射性的比较。40(蓝色虚线),直接用传统的远场显微镜(绿线)直接测量,使用介电函数计算得很适合拟合远距离的反射(红线),并从近乎测量的测量值(紫色squares)中提取。
摘要:遥感正在彻底改变森林研究的方式,而最近的技术进步,例如无人机 (UAV) 的运动结构 (SfM) 摄影测量,正在提供更有效的方法来协助 REDD(减少毁林和森林退化造成的排放)监测和森林可持续管理。这项工作的目的是开发和测试一种基于无人机 SfM 的方法,以在位于厄瓜多尔沿海地区(干旱热带森林)的柚木种植园(Tectona grandis Linn. F.)上生成高质量的数字地形模型 (DTM)。在旱季(叶子物候期),使用 DJI Phantom 4 Advanced © 四轴飞行器在位于瓜亚斯省(厄瓜多尔)的三个不同种植园的 58 个边长为 36 米的柚木方形地块上收集了无人机重叠图像。完成了一个工作流程,包括基于实地测量的地面控制点的 SfM 绝对图像对齐、非常密集的点云生成、地面点过滤和异常值移除以及从标记的地面点进行 DTM 插值。使用非常精确的地面激光扫描 (TLS) 得出的地面点作为地面参考,以估计每个参考图中的 UAV-SfM DTM 垂直误差。获得的地块级 DTM 呈现出较低的垂直偏差和随机误差(平均分别为 - 3.1 厘米和 11.9 厘米),显示出这些参考图中的统计上显著更大的误差