摘要 - 虽然粒子中的方法(PIC)方法是相当的,但对新开发的方法和单个代码的验证和验证主要集中在一些测试案例的特殊选择上。这些测试用例中的许多涉及一维模拟。这是由于(准)分析解决方案的可用性或历史原因。ad的测试通常集中于对特定物理问题(例如粒子排放或碰撞)的研究,并且不一定研究完整特色的PIC代码所需的算法套件的综合影响。由于三维(3D)代码成为标准,因此缺乏基准测试可以确定这些代码的有效性;现有论文要么不研究数值实验的细节,要么提供其他可测量的数字指标(例如噪声),这些指标是模拟的结果。本文旨在提供几种测试用例,可用于验证和基准在3D中的细胞代码中粒子标记。我们专注于无碰撞的示例,并且可以以合理的计算能力运行。四个测试案例以显着的细节呈现;其中包括基本的粒子运动,束扩展,血浆的绝热膨胀和两个流不稳定性。所有提出的案例均可根据现有的分析数据或其他代码进行比较。我们预计这些情况应该有助于解决基准标记和验证问题的空隙,并有助于在细胞代码中开发新粒子。
列出提交项目的传输信;项目标题;与计划关联的所有DPP文件编号;以及联系点的名称,电话号码和电子邮件地址。透射信应指示该项目是联邦,州,城市还是私人项目,以及该项目是否是根据细分规则和法规开发的。 A vicinity map A location map A drawing index Tax Map Key(s) (TMK) All applicable notes Scale- an engineering scale for plans and profiles and an architectural scale required for details A North arrow Existing and new property lines, with azimuths and distances, including all setbacks, Special Management Area, and flood zone designations and base flood limits, where applicable Street names and在适用的情况下,城市,州和私人街道右路之间的管辖权限制。应指定所有权或预期的所有权和维护街道。地役权,说明现有的还是新的,宽度,目的以及它支持的地方,在适用的情况下,基准标记(盒装)基线,包括方位角,站点和坐标。在一组设计图中,每张纸上被许可人的到期日期。缩写和符号的传说(特定于表格)所有适用的批准块现有的和拟议的道路地形(如有适用)。
操作 G-859AP 采矿磁选机使用图形界面,可快速高效地进行勘测设计和数据采集。“简单”或“映射”模式使用线号和已知的放样参考点来定义地图参数。或者,用户可以使用集成的 Tallysman TW5310™ GPS 自动绘制位置图。位置信息可能来自外部 GPS、操作员输入的间距均匀的基准标记,或两者兼而有之。用户可随时切换到“剖面”模式,以堆叠剖面的形式观察最后 5 条数据线。数据收集在最多 5 个单独的勘测文件中,并通过高速 RS-232 数据链路(或带转换器的 USB)传输到计算机,以进行进一步分析和地图生成。提供功能齐全的图形数据编辑程序 MagMap2000,允许重新定位、重新对齐、GPS 平滑、数据过滤和数据插值。编辑后,数据将格式化为 Surfer for Windows 或 Geosoft 格式,以便进一步绘图和分析。速度和效率 G-859AP 数据采集提供连续(自动)或离散站点记录。由于仪器在连续模式下的采样率很高,因此数据质量始终很高,而且大多数项目的成本都较低。这使操作员能够快速勘测某个区域,在给定的时间段内覆盖的面积比其他磁力仪多 10 倍。
摘要 — 这是预接受版本,要阅读最终版本,请访问 IEEE Xplore 上的《IEEE 地球科学和遥感学报》。本文解决了自动检测人造结构尤其是非常高分辨率 (VHR) 合成孔径雷达 (SAR) 图像中的建筑物这一极具挑战性的问题。在这方面,本文有两大贡献:首先,它提出了一种新颖的通用工作流程,该工作流程首先将星载 TomoSAR 点云(通过使用称为 SAR 断层扫描 (TomoSAR) 的先进干涉技术处理 VHR SAR 图像堆栈生成)在辅助信息的帮助下(即使用公开可用的 2D 建筑物足迹或采用光学图像分类方案)分为建筑物和非建筑物,然后将提取的建筑物点反投影到 SAR 成像坐标上,以自动生成大规模基准标记(建筑物/非建筑物)SAR 数据集。其次,这些标记数据集(即建筑物掩码)已用于构建和训练最先进的深度全卷积神经网络,并附加条件随机场(表示为循环神经网络)来检测单个 VHR SAR 图像中的建筑物区域。这种级联结构已成功应用于计算机视觉和遥感领域,用于光学图像分类,但据我们所知,尚未应用于 SAR 图像。结果
开放命名实体识别(NER)涉及从任意域中识别任意类型的实体,对于大语言模型(LLMS)仍然具有挑战性。最近的研究表明,对数据数据的微调LLM可以提高其性能。但是,直接对现有数据集进行培训会忽略其不一致的实体定义和冗余数据,从而将LLMS限制为数据集 - 特定的学习和阻碍域外适应性。为了解决这个问题,我们提出了B 2 NERD,这是一个紧凑的数据集,旨在指导LLMS在通用实体分类学下的开放NER中的概括。b 2书呆子使用两个步骤的过程从54个Ex-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is-Is。首先,我们检测到跨数据集的不一致的实体定义,并通过可区分的标签名称来澄清它们,以构建400多种实体类型的Uni-Glesal分类学。第二,我们使用数据修剪策略来解决冗余,该策略选择了更少的类别和语义多样性的样本。综合评估表明,B 2 NERD显着增强了LLMS的开放式NER功能。我们的B 2 NER模型,在B 2 NERD上训练,超过6.8-12.0 f1点,并超过15个数据集和6种语言的3个室外基准标记中的先前方法。数据,模型和代码可在https://github.com/umeannever/b2ner上公开获取。
平滑标签分配已成为训练犯罪模型的流行策略。然而,大多数现有方法通常是为分类任务而设计的,忽略了密集的预测问题的潜在属性,例如医疗图像分割。首先,这些策略通常忽略给定像素及其邻居之间的空间关系。和第二,与每个标签相关的图像上下文都被忽略了,这可以传达有关分割掩模中潜在错误或歧义的重要信息。为了解决这些局限性,我们在这项工作中提出了Geodesic标签平滑(GEOLS),该工作通过利用图像的地理距离变换来将图像信息整合到标签平滑过程中。作为生成的标签分配基于计算的测量图,软标签中的类别关系是更好的建模,因为它考虑了两个或多个类别的边界的图像梯度。此外,空间像素的关系是在地球差异转换中捕获的,比诉诸于像素之间的欧几里得距离更丰富的信息。我们在两个公开可用的分割基准标记上评估了我们的方法,并将它们与流行的分割损失函数进行比较,该功能直接修改标准硬牌分配。所提出的测量标签的平滑性提高了现有软标记策略的分割精度,证明将图像信息整合到标签平滑过程中的有效性。重现我们的结果的代码可在以下网址获得:https://github.com/adigasu/geols关键字:图像分割,地球距离,标签平滑
小语言模型(SLM)由于在边缘设备中的广泛应用而引起了学术界和行业的极大关注。为了获得具有强大性能的SLM,传统方法要么从头开始预训练模型,这会产生大量的计算成本,或者压缩/修剪现有的大语言模型(LLMS),这会导致性能下降,并且与预训练相比差不多。在本文中,我们研究了涉及结构化修剪和模型训练的加速方法家族。我们发现1)层面的适应性修剪(适应性培训)在LLM中非常有效,并且对现有的修剪技术的改善具有显着改善,2)适应性修剪,配备了进一步的训练导致模型,可与模型相当,与那些从抓挠中进行预训练的模型相当,3)逐步训练,仅通过促进培训,而仅通过互动而进行较小的培训(仅在较小的培训中),并且仅通过互动而进行互动(仅在较小的情况下),并且促进了较小的培训。一次5%)。对Llama-3.1-8b的实验结果表明,适应性抗性的表现要优于常规修剪方法,例如LLM-PRUNER,FLAP和SLICEGPT,平均在平均基准的准确度中以1%-7%的速度为1%-7%。此外,改编普朗纳(Adapt-Pruner)在MMLU基准测试上恢复了Mobilellm-125m的性能,并通过从其较大的对应物中修剪来降低代币,并发现了超过多个基准标记Llama-3.2-1B的新型1B模型。
自动脆弱性检测(ML4VD)机器学习的抽象最新结果非常有前途。仅给出函数F的源代码,ML4VD技术可以决定F是否包含具有高达70%精度的安全漏洞。但是,正如我们自己的实验中明显的那样,相同表现的模型无法区分包含漏洞和漏洞修补的功能的功能。因此,我们如何解释这一矛盾,以及如何改善评估ML4VD技术的方式以更好地了解其实际功能?在本文中,我们确定对无关的特征和分布外概括的过度拟合是两个问题,这不是通过评估ML4VD技术的传统方法来捕获的。作为一种补救措施,我们提出了一种新型的基准标记方法,以帮助研究人员更好地评估ML4VD技术的真正能力和限制。具体说明,我们建议(i)根据我们的交叉验证算法来增强培训和验证数据集,其中在训练集或测试集的增强过程中,应用语义保留转换,以及(ii)用code spippets进行了漏洞的测试集,以增强漏洞的测试集。使用六种ML4VD技术和两个数据集,我们发现(a)最先进的模型非常适合无关的功能,以预测测试数据中的脆弱性,(b)数据增强所获得的性能并不能超出培训期间的特定增强功能,并且(CART)无法将其范围固定在(CART-CART ML4VD TECHENIQUES上)。
抽象的语法校正校正(GEC)工具,由先进的生成人工智能(AI)提供动力,在用户输入中有效地纠正了语言的不准确性。但是,它们通常在提供基本的自然语言解释方面缺乏,这些解释是学习语言并获得对语法规则的更深入的理解。在低资源语言(例如孟加拉语)中对这些工具的探索有限。在这样的语言中,革命错误说明(GEE)系统不仅应正确句子,而且还应提供错误的解释。这种综合方法可以帮助语言学习者寻求提高能力。我们的工作介绍了一个现实世界中的多域数据集,该数据集来自孟加拉语扬声器,具有不同的义务水平和语言复杂性。此数据集可作为GEE系统的评估基准标记,允许他们使用上下文信息来生成有意义的解释和高质量的更正。Various generative pre-trained large language models (LLMs), in- cluding GPT-4 Turbo, GPT-3.5 Turbo, Text-davinci-003, Text-babbage- 001, Text-curie-001, Text-ada-001, Llama-2-7b, Llama-2-13b, and Llama-2-70b, are assessed against human experts for performance comparison.我们的研究强调了自动部署孟加拉人GEE的当前最新生成预培训的LLM的局限性。主张进行人干预,我们的发现提议合并手动检查以解决语法错误并提高反馈质量。这种方法提出了一种更合适的策略,以重新确定孟加拉语的GEC工具,并阐明了语言学习的教育方面。
摘要:对象识别,本地化和跟踪在计算机视觉应用中起着原始重要性的作用。但是,这仍然是一项极其艰巨的任务,尤其是在需要使用快速移动的无人机需要实时操作的对象的情况下。通常,这些基于视觉的系统的性能受到运动模糊和几何扭曲的影响,仅举两个问题。gimbal系统对于补偿运动模糊并确保视觉流稳定至关重要。在这项工作中,我们使用安装在无人机上的三级式(DOF)gimbal系统研究了主动跟踪方法的优势。提出了一种利用关节运动和视觉信息实时跟踪球形和平面对象的方法。跟踪方法在两个不同的逼真的凉亭仿真环境中进行了测试和评估:3D位置跟踪(球形)的第一个,第二个是6D姿势(平面基准标记)的第二个。我们表明,主动对象跟踪对于无人机应用是有利的,首先是通过减少动作模糊,这是由快速摄像机运动和振动引起的,其次,通过将感兴趣的对象固定在视场的中心内,从而减少了由于外围畸变而引起的重新投射错误。与传统的被动方法相比,结果表明有效的物体估计精度提高了主动方法的精度。更具体地说,一组实验表明,在具有挑战性的运动模式的条件下,在图像失真的情况下,主动的万日跟踪可以提高已知大小移动对象的空间估计精度。