• A121 60 GHz 脉冲相干雷达 (PCR),集成基带、RF 前端和封装天线 (AiP) • 32 位 ARM ® Cortex ® M4 MCU (STM32L431CBY6),80 MHz 时钟速度,128kB 闪存,64 kB RAM • 18.6x15 mm 小型尺寸,针对最大天线增益进行了优化 • 1.8 V 模拟和数字电源 • 1.8 V 或 3.3 V IO 接口电源 • 工作温度 -40° 至 85°C • 通过 UART、I2C、GPIO、复位支持外部 I/F • SWD/JTAG 用于 SW 闪存和调试 • 可以集成在塑料或玻璃天线罩后面,无需任何物理孔径。有关更多信息,请参阅硬件和物理集成指南 [6]。 • 平面栅格阵列 (LGA) 焊盘 • 提供密封卷轴,用于自动组装 • 用于 SWD 编程的 PCB 测试点
• 符合 EN 300 220-3 和 EN 301 489-3(仅限 10mW 版本) • 标准频率 151.300MHz • 其他频率从 120MHz 到 180MHz • 可单独用作 BiM1T 发射器和 BiM1R 接收器 • TX1H 是 TX1 引脚排列的 BiM1T • 标准模块的数据速率高达 10kbps • 可用范围超过 10km • 完全屏蔽 • 功能丰富的接口(RSSI、模拟和数字基带 • 低功耗要求 BiM1 是一种半双工无线电收发器模块,用于远距离双向数据传输应用,范围可达 10km。该模块在英国免许可频率 173.225/173.250MHz 下运行,射频输出为 10mW,澳大利亚频率为 151.300MHz,射频输出为 100mW 23 x 33mm 和 10mm 的低剖面,加上 3.8V 时 <80mA(100mW)的低功耗要求,可实现便捷的 PCB 安装。BiM1 也可用作单独的 BiM1T 发射器和 BiM1R 接收器,可分别用作 TX1 发射器和 RX1 接收器的双列直插式等效物。应用
摘要 - N路径交通的电容网络提供了一种实用的解决方案,以实施高度追求的高Q过滤应用程序,其中由于其显着的足迹和低Q因子而无法使用集团电感器。最近,还揭示了N-PATH网络还可以表现出其他有趣的功能,例如非偏置相移和超宽带真实的时间延迟,为各种互惠和非互动设备的微型化提供了途径。这些网络的分析处理仍然具有挑战性,因为它们的操作涉及时代调制产生的频率混合。在本文中,我们提出了一种基于扰动理论的N-PATH网络分析的高度准确的频域方法。我们的方法通过数学上的简单得多,与最先进的多相分析相比,但提供了与数值模拟基本上没有区别的结果,同时为N-Path滤波器运行提供了物理见解。我们为高Q运行方案提供了解决方案,并获得了简单的封闭形式分析表达式,以实现术语传递函数,散射参数和基带阻抗。
R&S®EX-IQ-Box – 通用 I/Q 接口 R&S®EX-IQ-Box* 为罗德与施瓦茨测量仪器提供通用数字基带输入和输出,例如用于 R&S®SMU200A 和 R&S®SMBV100A 矢量信号发生器以及 R&S®FSQ 和 R&S®FSV 信号和频谱分析仪。新选件允许该盒子与这些测量仪器一起或甚至独立地通过 CPRI™ 接口对基站模块进行测试。R&S®EXBOX-B85 选件提供必要的硬件作为符合 CPRI™ 标准的分线板。R&S®EXBOX-K10 和 -K11 选件包括测试 RE 和 REC 所需的功能。R&S®EX- IQ-Box 目前支持 CPRI™ 标准 4.0 版,线路比特率高达 3072 Mbit/s。提供现成的接口设置,用于主要由 CPRI™ 支持的 3GPP FDD / HSPA / HSPA+、3GPP LTE 和 WiMAX™ 标准。但是,该盒子还支持用户定义的配置,为用户提供最大的灵活性。
240 MHz 双核 Tensilica LX6 微控制器,具有 600 DMIPS 集成 520 KB SRAM 集成 802.11b/g/n HT40 Wi-Fi 收发器、基带、堆栈和 LWIP 集成双模蓝牙(经典和 BLE) 4 MByte 闪存 板载 PCB 天线 超低噪声模拟放大器 霍尔传感器 10x 电容式触摸接口 32 kHz 晶体振荡器 3 x UART(Feather Arduino IDE 支持中仅默认配置两个,一个 UART 用于引导加载/调试) 3 x SPI(Feather Arduino IDE 支持中仅默认配置一个) 2 x I2C(Feather Arduino IDE 支持中仅默认配置一个) 12 x ADC 输入通道 2 x I2S 音频 2 x DAC 每个 GPIO 引脚上可用的 PWM/定时器输入/输出 带有 32 kB TRAX 缓冲区的 OpenOCD 调试接口 SDIO主/辅 50 MHz SD 卡接口支持
这种最先进的分析将允许确定基站单元在感知和重新配置操作方面的预期发展和性能。对无线电单元技术需求的研究还将涉及基带和前传功能的分析,特别是支持监测多部门辐射的控制接口结构。通常用于这些功能的算法和模拟到数字/数字到模拟接口/处理器必须与无线电单元内的其他子集集成。需要确定与此类接口相关的功能和约束,以评估与 5G/6G 支持标准兼容的 Open RAN 的限制和操作配置。任务 2:可重构网络天线的新范式 - 概念和高级设计我们将研究新方法,并通过概念验证提供新的无线电感知和多种波束成形功能。我们将致力于设计和优化多波束天线,以实现空间分集和多波段功能。可以研究两种研究策略: - 一方面,我们将集中精力设计能够实现子波束控制的阵列天线系统,以实现多波束空间分集。- 其次,可以考虑在波束成形方面分别管理频率子带,以提供各种覆盖场景。一个问题可能是由于共集成结构而缓解 FR1(Sub-6Ghz)和 FR2(毫米波)频段。
当今的无线市场专注于将尽可能多的组件从模拟域转移到数字域,以降低每通道成本、尺寸和功耗;提高可靠性;并增加最终产品的灵活性。为了实现这些目标,必须将 RF 的输入信号数字化,从而消除所有模拟组件。但是,现有技术目前无法实现这种方法。另一种更实用的方法是将信号从 RF 混频到第一个 IF(范围可能在 455 kHz 和 250 MHz 之间)后再将输入信号数字化。如果采样消除了从 IF 到基带的必要第二级混频,则通常称为 IF 采样。下变频信号可能不只是一个 RF 载波,而是一个整个频带,为软件定义无线电(目前正在由 FCC 考虑)提供了机会,该领域可能有益于高 RF 载波数应用,例如蜂窝基础设施。随着高速、高精度模拟数字转换器的进步,中频采样现已成为可能。然而,ADC 的性能要求现在必须承担曾经分散在更多组件上的整个动态范围负担。本文重点介绍当前中频采样接收器设计中 ADC 的必要性能要求以及如何实现该性能。
摘要 为了满足移动蜂窝用户不断增长的数据需求,当今的 4G 和 5G 无线网络主要以最大化频谱效率为设计目标。虽然他们在这方面取得了进展,但控制此类网络的碳足迹和运营成本仍然是网络设计人员长期面临的问题。本文对这一问题进行了长远考虑,设想了一个 NextG 场景,其中网络利用量子退火进行蜂窝基带处理。我们收集并综合了有关量子退火技术的功耗、计算吞吐量和延迟、频谱效率、运营成本和可行性时间表的见解。利用这些数据,我们预测了未来量子退火硬件必须满足的定量性能目标,以便提供比 CMOS 硬件更具计算和功率优势,同时匹配其全网络频谱效率。我们的定量分析预测,在问题延迟为 82.32 µ s 和 2.68M 量子比特的情况下,量子退火将实现与 CMOS 相同的频谱效率,同时在具有 400 MHz 带宽和 64 根天线的大型 MIMO 基站中将功耗降低 41 kW(降低 45%),在具有三个大型 MIMO 基站的 CRAN 设置中使用 8.04M 量子比特将功耗降低 160 kW(降低 55%)。
产品策略 和许多从事 LAN 硬件业务的公司一样,Gateway Communications 近期致力于扩大其在 IEEE 802.3 lOBASE-T 市场的份额。随着用户群体广泛接受通过非屏蔽双绞线 (UTP) 进行 10M bps 以太网传输,几乎每一家提供以太网产品的供应商都已将其产品线扩展至 10BASE-T 硬件。Gateway 的产品线称为 G/EtherTwist,包括网络接口卡 (NIC)、集线器和收发器。Gateway 的 G/EtherTwist 系列包含两个独特成员:G/EtherTwist AT 集线器适配器和 G/EtherTwist AT 集线器扩展器。G/EtherTwist AT 集线器适配器于 1991 年 4 月推出,是一张卡上组合的 NIC 和集线器。G/EtherTwist AT 集线器扩展器将 G/EtherTwist AT 集线器适配器支持的节点数从 5 个增加到 9 个;使用第二块扩展卡最多可支持 13 个节点。据 Gateway 销售和营销副总裁 Bert R. Ott 介绍,“这些产品非常适合小型网络,因为在这种网络中,投资更昂贵的全尺寸集线器并不现实。”Gateway 的其他 LAN 硬件产品分为三个系列:G/Ethernet、G/Token-Ring 和 G/Net。G/Ethernet 和 G/Token-Ring 分别符合 IEEE 802.3 和 802.5 规范。G/Net 是 Gateway 的原始产品,是一种非标准 LAN,采用基带线性总线拓扑结构,并使用载波侦听多路访问、冲突检测和收集
提出了一种采用 180 nm CMOS 工艺的上变频混频器。本研究详细阐述了几种混频器的类型、混频器的性能参数、混频器的拓扑结构以及提高混频器性能的设计技术。主要目的是提高增益、增加线性度和噪声系数。有四种金属层可供设计。对以前发表的研究进行了比较,并提出了低功耗混频器的最佳拓扑结构。关键词:混频器,噪声系数,变频增益,CMOS 1. 简介超宽带 (UWB) 系统是无线通信的主要技术之一。混频器是将 RF 信号转换为基带信号的关键。混频器是 RF 通信系统中最重要的元件之一。当两个不同的输入频率插入另外两个端口时,它被设计为在单个输出端口产生和频和差频。插入两个输入端口的两个信号通常是本振信号和输入(对于接收器)或输出(对于发射器)信号。要产生新频率(或新频率),需要非线性设备。射频混频器本质上是一种将信号从一个频率移到另一个频率的设备。混频器产生输入频率、LO 频率及其互调产物的谐波。这些谐波增加了混频器的非线性。设计混频器的基本目标是抑制谐波。理想的混频器是一个乘法器电路。理想的混频器将一个载波频率周围的调制转换到另一个载波频率。由于混频器是一种非线性设备,因此它无法执行频率转换。