经典的霍金宇宙奇点定理 [ 10 ,第 272 页] 证明了空间封闭时空在未来某个阶段会膨胀时存在过去类时间测地线不完备性。该奇点定理要求时空的 Ricci 张量满足强能量条件,即对所有类时间矢量 X ,Ric ( X , X ) ≥ 0。在遵循爱因斯坦方程且具有正宇宙常数 > 0 的时空中,通常不满足此能量条件,因此该结论不一定成立;测地线完备的德西特空间就是一个直接的例子。但这不仅仅是真空时空的特征;具有正宇宙常数的充满尘埃的 FLRW 时空提供了其他例子。对于 [8,第 3 节] 中讨论的 FLRW 模型,共动柯西曲面被假定为紧致的,并且除了时间相关的尺度因子外,曲率均为常数 k = + 1 , 0 , − 1。这三种情况在拓扑上截然不同。例如,在 k = + 1(球面空间)的情况下,柯西曲面具有有限基本群,而在 k = 0 , − 1(环形和双曲 3 流形)的情况下,基本群是无限的。此外,只有在 k = + 1 的情况下,过去大爆炸奇点才可以避免。
摘要:证明了一些有限表示群由于其 SL 2 ( C ) 特征品种而与代数曲面相关的表示理论。我们利用代数曲面的 Enriques–Kodaira 分类和相关的拓扑工具来明确此类曲面。我们研究了 SL 2 ( C ) 特征品种与拓扑量子计算 (TQC) 的联系,作为任意子概念的替代方案。Hopf 链接 H 是我们对 TQC 观点的核心,其特征品种是 Del Pezzo 曲面 f H (交换子的迹)。从我们之前工作中的三叶结衍生而来的量子点和双量子比特魔法状态计算可以看作来自 Hopf 链接的 TQC。一些二生成 Bianchi 群的特征品种以及奇异纤维 ˜ E 6 和 ˜ D 4 的基本群的特征品种包含 f H 。与 K 3 曲面双有理等价的曲面是它们的特征簇的另一种复合体。
摘要。作者先前利用具有关系的自由群 G 子群的陪集结构找到了一种通用量子计算模型。G 中指数为 d 的有效子群 H 导致 d 维希尔伯特空间中的“魔法”状态 | ψ ⟩,该状态编码最小信息完备量子测量 (MIC),可能带有有限的“上下文”几何。在本研究中,我们选择 G 作为奇异 4 流形 V 的基本群 π 1 (V),更准确地说是“小奇异”(时空) R 4 (即同胚和等距,但不与欧几里得 R 4 微分同胚)。我们所选的例子归功于 S. Akbulut 和 RE Gompf,它具有两个显著的特性:(a) 它显示了标准上下文几何的存在,例如法诺平面(索引 7 处)、梅尔明五角星(索引 10 处)、两量子比特交换图像 GQ (2 , 2)(索引 15 处)以及组合格拉斯曼流形 Gr(2 , 8)(索引 28 处);(b) 它允许将 MIC 测量解释为源自此类奇异的(时空) R 4 。我们将拓扑量子计算与奇异时空联系起来的新图像也旨在成为一种“量子引力”方法。
双曲性由格罗莫夫 [ Gro87 ] 引入,是几何群论中最突出的负曲率概念,具有强大的代数和算法意义 [ Gro87 、 Pau91 、 DG11 、 Sel95 、 ECH ` 92 ]。许多重要的群都具有某些负曲率,但不是双曲的,包括群的自由积、映射类群、许多三维流形的基本群、某些阿廷群和克雷莫纳群。这一观察导致了对双曲群各种推广的研究,例如相对双曲群 [ Far98 、 Osi06 、 Bow12 ]、圆柱双曲群 [ Osi16 、 DGO17 ] 和 Morse 局部到整体 (MLTG) 群 [ RST22 ]。对于任何这些推广,很自然地会问它们满足负曲率的哪些方面。本文重点讨论 MLTG 群。MLTG 群的一个主要特征是在 [ RST22 ] 中引入的,它能够消除 Morse 测地线的病态行为。例如,如果一个 MLTG 群包含 Morse 测地线,则它有一个 Morse 元;如果它包含 Morse 元,则它有一个与 F2 同构的子群。这对于一般群来说并非如此 [ Fin17 , OOS09 ]。因此,很自然地,我们会问,消除病态行为是否足以确保圆柱双曲性。