1964 年,电气和电子工程师协会 (IEEE) 标准委员会 IA 成立了一个频率稳定性小组委员会,后来(1966 年)仪器和测量协会 (SIX) 的频率和时间技术委员会也成立了一个小组委员会,以制定 IEEE 频率稳定性标准。1969 年,该小组委员会完成了一份文件,提出了频率和相位稳定性测量的定义(Barnes 等人,1971 年)。这些推荐的频率发生器不稳定性测量方法得到了全世界频率和时间用户的普遍认可。
一些具有基本频率(F 0)控制的神经声码器已成功地对单个CPU进行实时推断,同时保留了合成语音的质量。但是,与基于信号处理的旧声音编码器相比,它们的推理速度仍然很低。本文提出了一个基于源滤波器模型的神经声码器,具有可训练的时间变化的有限冲动响应(FIR)过滤器,以达到与传统声音编码器相似的推理速度。在拟议的模型中,使用神经网络预测了FIRNET,多个FIR系数,然后通过将混合的激发信号与这些FIR系数进行卷积,从而生成语音波形。实验结果表明,Firenet可以达到类似于传统声音编码器的推理速度,同时保持F 0可控性和自然语音质量。
有人建议,教学法中的媒体和技术有效性是一个神话。干预并非仅仅因为新干预而自动有效。,通常,最初的炒作经常导致期望和随后的失望。虚拟和增强现实,使用越来越广泛的数字平台的元式和协作虚拟学习环境都在此叙述中均出现了。但是,最初的失败无法满足期望,尤其是在理所当然的价值时,不应谴责这些技术被驳回。具有异性设计的新兴机会(异步和不对称角色,任务,接口平台,用户功能等)他们的技术能力和教学潜力太显着。的需求是通过有意义的经验进行更深入的学习,而后者是通过用户体验因素所带来的情感和认知参与来促进的,这些因素包括存在,流动和自我效能感。本文的核心断言是,通过以用户为中心的软件设计,可以大大增强这些学习技术的有效研究,这些软件设计的重点是唤起这些因素。硬件配置和软件设计应提供基于研究信息的互动设计构建的培训场景。这里的转折是,在本文中,我们将寻求经常被低估的听觉感知领域,特别是与人类与人类与数字技术的互动有关,以提出一套新颖的交互设计原理,目的是增强扩展现实的协作。
■大部分语音都表达了,表现出具有基本频率和许多较高态度的一定程度。一些神经种群对这种时间良好的结构做出反应,特别是在基本频率下。This frequency-following response to speech consists of both sub- cortical and cortical contributions and can be measured through EEG as well as through magnetoencephalography (MEG), although both differ in the aspects of neural activity that they capture: EEG is sensitive to both radial and tangential sources as well as to deep sources, whereas MEG is more restrained to the measurement of tangential and superficial neural activity.eeg对连续语音的反应显示,与
Intel® Core™ i9-13950HX with Intel® UHD Graphics (1.6 GHz E-core base frequency, 2.2 GHz P-core base frequency, up to 4.0 GHz E-core Max Turbo frequency, up to 5.5 GHz P-core Max Turbo frequency, 36 MB L3 cache, 8 P-cores and 16 E-cores, 32 threads), supports Intel® vPro® Technology Intel® Core™ i7-13850HX with Intel® UHD Graphics (1.5 GHz E-core base frequency, 2.1 GHz P-core base frequency, up to 3.8 GHz E-core Max Turbo frequency, up to 5.3 GHz P-core Max Turbo frequency, 30 MB L3 cache, 8 P-cores and 12 E-cores, 28 threads), supports Intel® vPro® Technology Intel® Core™ i5-13600HX with Intel® UHD图形(1.9 GHz E核基本频率,2.6 GHz P核基本频率,高达3.6 GHz E核最大涡轮频率,高达4.8 GHz P核最大涡轮涡轮增压频率,24 MB L3缓存,6个P核和8个e-cores,8个e-cores,20个螺纹,支持Intel®VPRO®CoreIntel®CoreIntel®Core™INTERPRAPTION INTERPRAPTICS INTER®INTERTICTICT ENDERS INTER™I9-149-149-HXER(HUS)基本频率,2.2 GHz P核基本频率,高达4.1 GHz E核最大涡轮频率,高达5.8 GHz P核最大涡轮频率,36 MB L3缓存,8个P核和16个E核,32个线程,32个线程)Intel®Core™I7-14700HX I7-14700HX,具有Intel®ghz up频率(1.5 GHZ UP base base base 9 ghz base base base 3. 3. 3. GHZ 2.1 GHZ PRESY,2.1 GHZ PR频率,2.11 core,2.1 ghz cor,2.1 cor,2.11。涡轮频率,最高5.5 GHz P核最大涡轮频率,33 MB L3缓存,8个P核和12个E核,24个线程)
▪▪由于我们的无磁性材料而引起的低声噪声发展,这些材料是由我们的制造而开发和生产的。可以在正弦波过滤器中找到一个有吸引力的应用:在电动机和正弦波滤波器上大大减少了声音。▪▪可能的较高基本频率而不降低▪▪与铁氧体相关的高控制范围。HFCM饱和感感应最多2 t。▪▪由于较低的所有模式电感,因此系统的高动态性。
口语基本频率模式(SFF)因语言和性别认同而有所不同。此外,会说话任务的类型(阅读与自发)也可能影响SFF。这项研究探讨了来自Cisgender和Transgender扬声器的西班牙语 - 英语双语者的SFF模式。记录了二十四名演讲者(8名sisgender男性,8名sisgender妇女和8名变性妇女)被记录在阅读一段段落以及回答自发发言的访谈问题上。在口语任务和语言中发现最小,最大,范围和中位数SFF的度量是稳定的。发现性别的显着影响。sisgender男女分别产生了最低和最高的SFF值。跨性别妇女产生的中位数SFF值介入了男性和女性之间的中间值。
II。 傅立叶变换与计算机视觉之间的联系以分析和处理图片或视频,即计算机视觉学科,这与分析和从视觉输入中分析和提取有意义的信息有关,采用了许多数学方法。 傅立叶变换是计算机视觉的主食,作为最基本的数学方法之一。 图片可以过滤,可以提取功能,可以注册图片,并且可以借助傅立叶变换和检查其频率含量的检查来识别所有图案。 图像通常通过计算机视觉算法作为二维像素值矩阵处理。 使用傅立叶变换,我们可以通过将其从空间域转换为频域来检查图像的基本频率组件。 为此,在图像矩阵的每一行和列中分别执行傅立叶变换。 图像过滤是对计算机视觉的傅立叶变换。 噪声和其他异常在数字图像中很常见,降低了图像质量并使进一步的处理更加困难。 通过对图片进行傅立叶变换,我们可以隔离关键频率以减少其影响。 当在频域中表示图像时,可以应用过滤操作,例如高通滤波器,以带出小功能和低通滤波器,以使图像平滑并减少噪声。 逆傅里叶变换用于通过将其转换回空间域来获取过滤的图片。 [7]II。傅立叶变换与计算机视觉之间的联系以分析和处理图片或视频,即计算机视觉学科,这与分析和从视觉输入中分析和提取有意义的信息有关,采用了许多数学方法。傅立叶变换是计算机视觉的主食,作为最基本的数学方法之一。图片可以过滤,可以提取功能,可以注册图片,并且可以借助傅立叶变换和检查其频率含量的检查来识别所有图案。图像通常通过计算机视觉算法作为二维像素值矩阵处理。使用傅立叶变换,我们可以通过将其从空间域转换为频域来检查图像的基本频率组件。为此,在图像矩阵的每一行和列中分别执行傅立叶变换。图像过滤是对计算机视觉的傅立叶变换。噪声和其他异常在数字图像中很常见,降低了图像质量并使进一步的处理更加困难。通过对图片进行傅立叶变换,我们可以隔离关键频率以减少其影响。当在频域中表示图像时,可以应用过滤操作,例如高通滤波器,以带出小功能和低通滤波器,以使图像平滑并减少噪声。逆傅里叶变换用于通过将其转换回空间域来获取过滤的图片。[7]
了解第二语言(L2)学习者所面临的挑战对于有效的语言获取至关重要。这项研究调查了夸张的声学特性对促进英语说话者的普通话学习的影响。使用合成的音调刺激,我们通过三个关键修改系统地操纵了音高轮廓:扩展基本频率(F0),增加F0(女性语音)并延长整体持续时间。我们的目标是评估F0扩展,较高的F0,更长的持续时间以及各种音节对普通话的学习和概括的影响。参与者从事非自适应试用语调识别任务。混合效应逻辑回归模型用于分析学习阶段,声学因素和色调的准确性。的发现揭示了从训练到测试和概括阶段的准确性提高,表明感知训练对成人说英语的人的音调有效。音调1的出现是最容易感知的,而音调3则构成了最挑战,与既定的色调获取难度层次结构一致。对声学因子的分析突出了特定于音调的效果。扩展的F0对识别音调2和音调3是有益的,但对音调1和音调4。此外,较长的持续时间也表现出各种色调的各种效果,有助于识别音调3和音调4但阻碍音调1的识别。较高的F0对于音调2是有利的,但对于音调3。此外,音节MA促进了音调1和音调2的识别,但对于音调3和音调4。这些发现增强了我们对声学特性在L2音调感知中的作用的理解,并对设计有效的培训计划的设计有影响。
摘要:听觉稳态反应(ASSR)是几种神经系统和精神疾病的转化生物标志物,例如听力损失,精神分裂症,双相情感障碍,自闭症等。ASSR是正弦脑电脑术(EEG)/磁脑电图(MEG)反应,该反应是由定期呈现的听觉刺激引起的。传统频率分析假定ASSR是一种固定响应,可以使用线性分析方法(例如傅立叶分析或小波)进行分析。然而,最近的研究报告说,人类的稳态反应是动态的,可以通过受试者的注意,清醒状态,精神负荷和精神疲劳来调节。由于三角乘积 - 和-SUM公式,在测得的振荡响应上的振幅调制可能会导致光谱宽或频率分裂。因此,在这项研究中,我们通过规范相关分析(CCA)和Holo-Hilbert光谱分析(HHSA)的组合分析了人类的ASSR。CCA用于提取相关的信号特征,HHSA用于将提取的ASSR响应分解为振幅调制(AM)组件(AM)组件和频率调制(FM)组件,其中FM频率代表快速变化的Intra频率,AM频率代表慢变化的频率。在本文中,我们旨在研究37 Hz稳态听觉刺激中ASSR响应的AM和FM光谱。与HHSA,37 Hz(基本频率)和74 Hz(第一个谐波频率)的听觉响应都成功提取。二十五个健康的受试者,并要求每个受试者参加两个听觉刺激课程,包括一个右耳和一个左耳和一个左耳的单膜稳态听觉刺激。检查AM光谱,37 Hz和74 Hz听觉响应均由不同的AM光谱调节,每个光谱至少具有三个复合频率。与传统的傅立叶光谱的结果相反,在37 Hz处看到频率分裂,并且在傅立叶光谱中以74 Hz的形式遮盖了光谱峰。所提出的方法有效地纠正了随时间变化的幅度变化而导致的频率分裂问题。我们的结果已验证了HHSA作为稳态响应(SSR)研究的有用工具,以便可以避免传统傅立叶频谱中振幅调制引起的误导或错误解释。