摘要 本文研究了一种具有可变增益控制的 60 GHz 低功耗宽带低噪声放大器 (LNA)。为了证明这一概念,该电路采用 22 nm 全耗尽绝缘体上硅 (FD-SOI) CMOS 技术实现。它通过增益峰值(增益分配)技术支持 60 GHz 的宽带操作。通过调整放大器的一些关键匹配网络,每级的峰值增益被分配到不同的频率,从而产生整体宽带频率响应。该电路由三个级联共源共栅放大器级组成。匹配网络针对带宽和噪声系数进行了优化。晶体管背栅用于 LNA 设计,以将电路切换到低功耗待机模式。这避免了基于前栅的切换在电压击穿和电路稳定性方面的问题。此外,通过背栅实现了在如此高频率下同时实现可变增益控制。与基于前栅的相比,基于背栅的可变增益控制可以实现增益的连续微调,同时对控制电压的精度或分辨率要求较低。在测量中,增益通过背栅成功从 20 dB 调低至 − 25 dB。在 1 V 标称电源的 8.1 mW 直流功率下,LNA 提供 20 dB 的峰值增益、18.5 GHz 的带宽和 3.3 dB 的最小噪声系数。当偏置在 0.4 V 的降低直流电源下时,所给出的电路仅消耗 2.5 mW 的直流功率,并且仍然提供 10 dB 的功率增益和约 4.5 dB 的最小噪声系数。通过切换到待机模式,LNA 在标称电源下消耗 850 µ W 的直流功率,在降低电源下消耗 240 µ W 的直流功率。与之前报告的设计相比,LNA 表现出色,具有最低的噪声系数以及具有竞争力的增益、带宽和直流功率。据作者所知,这是第一款通过单独的背栅偏置具有联合可变增益控制和切换功能的 60 GHz LNA。
“暗”信号在显示屏上从未低于 #4;降低增益设置。有两个可能的原因:1) “暗”信号缓慢增加并在预定的延迟时间内保持在 #4 级别,通常是由于反射传感模式(如漫反射或会聚)中不必要的背景反射逐渐增加所致。一旦消除了不必要的光信号的原因,或者如果降低增益控制设置以使“暗”条件低于 #4 级别,警报就会重置。2) 在传感事件期间,“暗”信号不会低于 #4 级别。当“暗”传感级别低于 #4 级别时,警报会自动重置(通过降低增益控制设置和/或消除“暗”条件下不必要的光返回的原因来实现)。
目标指导的行为需要有意识和潜意识引起的反应冲突。神经元增益控制增强了加工效率,对于解决方案至关重要,尽管它面临固有的物理限制,但可以通过药理或脑刺激干预措施来增加。这项研究检查了阳极经颅直流电流刺激(ATDCS)和哌醋甲酯(MPH)对冲突处理的影响。健康的成年人(n = 105)执行了一项艰巨的任务,脑电图(EEG)用于评估α和theta带活性(ABA,TBA)。结果表明,将ATDC与MPH相结合的增强认知控制和减少反应冲突比仅与ATDC相结合,尤其是当两种冲突类型的类型共同发生时。ATDC和ATDCS + MPH均表现出(前)补充运动区域中相似的任务诱导的ABA和TBA调制,表明增益控制增强。重叠的额叶中部区域的神经解剖学效应表明,ATDC和MPH具有共同的神经元控制机制,尤其是在高频道/需求的情况下。
∙ 2000 个常规存储信道(带有 8 个字符的名称)∙ DTCS 和 CTCSS 音频静噪∙ VSC(语音静噪控制)( FM、FM-N、WFM、AM、AM-N)∙ AFC(自动频率控制)( FM、FM-N、WFM)∙ 噪声消除器(SSB、CW)∙ ANL(自动噪声限制器)(AM、AM-N)∙ RF 增益控制(10 级)∙ ATT 功能(3 级)∙ 按键锁功能∙ 监控功能∙ 省电功能(3 级)∙ 使用拨号或侧面按钮设置音量或频率∙ 快捷菜单功能∙ 时钟
将介绍在Polimi开发的医学成像应用中开发的ASIC。sipms读数的整体闪烁体读数允许伽马射线的光谱和相互作用测量位置,这也可以在模拟通道中的主动增益控制机理,在较大的动态范围内。尤其是在迅速-gamma测量中应用剂量治疗中的剂量验证。新的Anna ASIC实现了一个集成的神经网络,该神经网络直接处理从检测器的模拟信号,朝着闪烁体中相互作用的伽马射线位置的芯片重建。
2-5.控制的灵敏度和增益。由于许多控件会改变其运动和力以实现功能,因此增益或灵敏度是关键的设计参数。特别是,它强烈影响任务速度和错误之间的权衡。高增益值往往有利于飞行员的舒适度和快速输入,但也可能导致错误(例如,超调,无意激活)。低增益值往往有利于需要精确度的任务,但也可能对任务来说太慢。控制的增益和灵敏度通常需要权衡以支持预期功能。特别考虑可变增益控制。准确复制实际飞机中存在的响应滞后和控制增益特性,并表明控制的增益和灵敏度对于预期功能是可以接受的。
DaletPlus AudioSurfer 一款易于使用的专业多轨音频编辑器。• 快速、简单、“一键式”操作。• 根据用户偏好进行单轨到多轨编辑。• 在同一音轨中混合多种音频格式:线性、MPEG-1 第 2 层和第 3 层 (MP3)。• 录制、导入、编辑和合并多个音轨。• 边录制边编辑。• 直接将音频录制到时间线。• 可配置的键盘快捷键。• 图形淡入/淡出控制。• 逐轨图形增益控制和音量曲线。• 简单的画外音录制、编辑和配音。• 将编辑内容保存为数字音频文件或广播就绪的 EDL。• 剪辑时间压缩/扩展(+/- 5%),不会影响音调或引入可听见的伪影。• 频率调整(上/下)。• 动态压缩和扩展。• 多轨时间移位
集成 12 位 DAC 和 ADC 的射频 (RF) 2 × 2 收发器 宽带宽:325 MHz 至 3.8 GHz 支持时分双工 (TDD) 和频分双工 (FDD) 操作 可调通道带宽 (BW):高达 20 MHz 接收器:6 个差分输入或 12 个单端输入 卓越的接收器灵敏度,噪声系数:3 dB 接收 (Rx) 增益控制 用于手动增益的实时监视器和控制信号 独立的自动增益控制 (AGC) 双发射器:4 个差分输出 高线性宽带发射器 发射 (Tx) 误差矢量幅度 (EVM):−34 dB Tx 噪声:≤−157 dBm/Hz 本底噪声 Tx 监视器:66 dB 动态范围,精度为 1 dB 集成小数 N 合成器 2.4 Hz 本振 (LO) 步长 CMOS/LVDS 数字接口
在许多应用中,包括 RF 设计的 VGA/PGA,具有 dB 线性(dB 尺度上的线性关系)增益特性的放大器是首选,因为它在 AGC 环路中使用时可以实现恒定的稳定时间 [13–15]。这种关系在 BJT 技术中很容易实现,其中增益与控制信号呈指数关系 [16–18]。对于 MOS 器件,尽管指数关系存在于亚阈值区域并可提供较宽的增益控制范围 [19],但饱和区有利于降低噪声并增加带宽 [20],并且由于后者的平方关系,需要指数 VI 转换电路来实现指数增益控制关系 [21]。实现指数转换器的一些方法采用 BiCMOS 技术[22–24]、寄生双极晶体管[20]或使用提供伪指数函数近似的 CMOS 电路[25,26]。
摘要 - 具有光学动力和数据遥测的基于最小的和无线近红外(NIR)的神经记录器是一种有希望的长期监测的有前途的方法,该方法具有最小的现状独立唱片仪之间的最小物理维度。但是,基于NIR的神经记录综合电路(IC)的主要挑战是在存在光引起的寄生寄生短路电流的情况下保持强大的操作。当信号电流保持较小以降低功耗时,尤其如此。在这项工作中,我们为电动机预测提供了一个容忍和低功率的神经记录IC,该记录可以在低调的300 µw/mm 2中充分发挥作用。,它以4.1噪声效率因子(NEF)伪抗抑制作用的放大器,芯片神经特征提取器和单个的Mote-Mote级增益控制,在38℃时达到了0.57 µW的最佳能力消耗。应用猴子的20通道预录的神经信号,IC可以预测用