该项目旨在根据 IEC 1157, 1993《诊断超声设备声输出声明要求》对两个参考设备(NPL 检查源和动态诊断医学超声扫描仪)进行欧洲测量比对。欧洲医学超声设备制造商已将此标准用作证明符合 1995 年 1 月 1 日生效的 EC 医疗器械指令(93/42/EEC)基本要求的手段之一。该项目以放射状组织,协调员 NPL 发挥核心作用。来自七个 EC 国家的十名参与者根据 IEC 1157 对检查源和扫描仪进行了测量,NPL 负责协调、稳定性测试和参考设备的参与者间检查,以及最终分析和报告结果。
中尺度涡旋对海洋温度和盐度结构产生重大影响,从而改变生态环境和声传播特性。先前对中尺度涡旋效应下声传播的研究主要集中于碎片化的、快照式的分析。而本研究采用整体的方法,通过整合多源数据来阐明海洋温度和盐度结构,最终影响它们的生态环境和声传播。与现有论文相比,本研究采用了更全面、更连续的方法。通过融合多源数据,本研究引入了一种创新的中尺度涡旋跟踪算法和增强的高斯涡旋模型。利用BELLHOP射线理论模型,本研究研究了西北太平洋一个气旋涡旋和一个表现出完整生命周期的典型反气旋涡旋(CE-AE)对的声场特征。结果表明,中尺度涡旋的整个生命周期对声场环境产生显著的影响。随着CE的增强,汇聚区(CZ)距离减小,CZ宽度扩大,直达波(DW)距离缩短。相反,增强的AE会使CZ距离增加,CZ宽度收缩,DW距离延长。本文定量分析了影响涡旋生命周期的关键因素,结果表明涡旋强度和变形参数都显著影响声传播特性,其中涡旋强度的影响更大。本研究对海面测高数据在水下声学研究中的应用具有重要的贡献,并对典型中尺度涡旋环境中涡旋参数对水下声传播的影响提供了初步认识。此外,这项研究为未来研究海洋系统中涡流动力学和声传播之间的复杂关系奠定了基础。
声辐射力 (ARF) 是由声波产生的稳定力,是实现微物体操作的一种便捷方式,例如微样本分离 [1-3] 和富集 [4]、细胞分选 [5,6] 和单细胞操作 [7]。与使用时间周期声场相比,使用脉冲和波列等瞬态激励可以实现更精确的操作 [1-7]。首先,脉冲声操作受瑞利声流的干扰较小 [8,9],因为辐射力比声流建立得快得多 [10,11]。其次,使用声波包可以定位声干涉图样,从而控制声捕获区域的空间范围 [12]。事实上,驻波比行波施加了大得多的辐射力(在小颗粒极限内),激光制导声镊(LGAT)[13] 利用这种干涉原理,创造了一种混合辐射力景观,该景观将高振幅压电声场(强,Z 场)和光图案光生声场(弱,L 场)耦合在一起。混合场保留了 L 场的空间信息和 Z 场的强度。
图5。在远程声音测量的回响房间内的三维声场。A和B:实验设置。LDV(B,灰色框)用于获取由扬声器辐射的声场(A,Black Box)辐射的声场的声音测量。声场在正方形的permid体积(红色)上顺序扫描。在1×0.5-×0.5-m 3矩形体积(b,虚线)中重建声场,声压在与该体积的三个侧面的三个平面上显示。c-f:随着时间的推移,声压的四个快照。c:从源到达的声音。d:波前旅行。e:两次反射,一个从墙壁上,一个从地板上进行。f:两种反射之间的干扰模式。颜色图表示声压的幅度。从Verburg和Fernandez-Grande(2021)复制,经美国物理学会的许可,版权2021。
声音悬浮器可以在空中悬挂小的轻巧的颗粒,例如聚苯乙烯泡沫球。在这项研究中,通过借助Arduino微控制器配置超声传感器来生成声场。由于声波的碰撞而产生了常驻波,该声波由节点(无位移点)和抗inodes(最大位移点)组成,它创建了一个由于声压力差而可以悬浮对象的区域。将物体放在这些压力点处会产生悬浮。实验设置,其中包括H桥和12V电源,成功地悬浮了声场中的小颗粒。精确的频率校准和传感器对准对于悬浮而言至关重要。声悬浮在科学领域中具有各种潜在应用,包括非接触式材料处理,研究外层空间的流体和颗粒的特性以及美学目的。
听众包围感(LEV)是一种完全沉浸在声场中的感觉,可用于比较不同音乐厅的聆听体验。通过使用延迟和混响器产生的模拟声场,LEV 已被证明与客观参数后期横向声级(GLL)相关。本研究的主要目的是调查这种相关性,使用在 900 个座位的大厅中进行的双耳录音和在 ODEON v9.20 模型中进行的听觉化,测量和预测 GLL 值。此外,还比较了实际录音和模拟的评分以确定等效性。进行了一项主观研究,使用 35 名受过音乐训练的测试参与者,他们对 24 种刺激进行评分,这些刺激因接收器位置和大厅设置而异。发现双耳录音的评分与测量和模拟的 GLL 值呈线性相关,而听觉评分与 GLL 没有明显的线性关系。然而,当比较录音和听觉评分时,只有两种情况有显著差异。� 这项工作由哈特福德大学格林伯格青年教师基金资助。�
麦克风安装在扬声器前面,这样声音就沿着它们的圆柱对称轴入射。扬声器由一系列频率的正弦信号驱动,以产生大约 74 dB 的声压级,麦克风输出在 Norsonics 830 实时分析仪上测量。在测量过程中,麦克风被交换以消除声场或前置放大器和分析仪输入通道增益的任何差异。应用了校正来解释 WSI 麦克风和 WS2 麦克风之间前置放大器的不同电负载。使用正弦信号而不是粉红噪声来避免由于两个麦克风在目标频率下的频率响应非常不同而导致的任何错误。
2004 年 1 月 基于光学方法的声学基本标准 — — 水中声音的第三阶段报告 Peter Theobald 1 、Alex Thompson 1 、Stephen Robinson 1 、Roy Preston 1 、Paul Lepper 2 、Colin Swift 3 、Wang Yuebing 4 和 John Tyrer 2 1 英国国家物理实验室声学与电离辐射中心,泰丁顿,米德尔塞克斯 TW11 0LW 2 拉夫堡大学机械工程系,阿什比路,拉夫堡,莱斯特郡 LE11 3TU 3 激光光学工程有限公司,邮政信箱 6321,拉夫堡,莱斯特郡 LE11 3XZ 4 杭州应用声学研究所,浙江省杭州市桂花溪路 80 号,311400,中国 摘要 本报告记录了声学和电离辐射研究的进展情况。致力于开发基于光学方法的声学基本标准,用于测量 1 kHz 至 500 kHz 之间的水中声音。实现这一目标的首选方法是使用异差干涉法和声场中的反射膜进行粒子速度测量。本报告重点研究了反射膜的合适设计和“全光纤”异差干涉仪的性能。还报告了新型“全光纤”异差干涉仪的一些新进展,以及最近与使用互易法校准的参考水听器的比较结果。该报告还介绍了一些可用于传感器特性和声场映射的不同光学技术。本报告是英国贸易和工业部 NMS 量子计量计划项目 3.6 第三阶段工作包的可交付成果。该项目的水中声音部分由国家物理实验室和拉夫堡大学组成的联合体负责,激光光学工程有限公司是分包商。