摘要:纳米级机械谐振器引起了信号处理,传感器和量子应用的广泛关注。纳米结构中超高Q声腔的最新进展允许与各种物理系统和高级功能设备进行牢固的相互作用。那些声学腔对外部扰动高度敏感,由于这些响应是由几何和材料确定的,因此很难控制这些共振特性。在本文中,我们通过在光力学系统中混合高阶Lorentzian响应来演示一种新型的声学共振调节方法。使用弱耦合的语音晶体声腔,我们实现了二阶和三阶洛伦兹响应的连贯混合,这能够具有与设备的声学耗散率相当的共振范围的带宽和峰值频率的微调和峰值频率。这种新颖的共振调节方法可以广泛应用于洛伦兹响应系统和光学机械,尤其是针对环境波动和制造误差的主动补偿。关键字:光子综合电路,硅光子学,声学效应,片上布里群散射,光学机械
摘要:范德华(VDW)磁体中的强旋晶格耦合显示了创新磁力机械应用的潜力。在这里,超快电子显微镜通过纳米级和皮秒成像揭示了在VDW抗FIRERMAGNET FEPS的薄膜腔中的异质自旋介导的相干声子动力学3。观察到了层间剪切声模式的谐波,其中均匀和奇数谐波表现出独特的纳米动力学。通过声波模拟证实,缺陷在形成甚至谐波中的作用是阐明的。在NéEl温度(T n)上方,层间剪切声谐波被抑制,而平面运动波则主要激发。主要的声学动力学从平面外剪切到跨T n的平面行驶波动,表明磁性特性会影响声子散射途径。空间分辨的结构表征为基于层间剪切模式的声腔提供了有价值的纳米镜见见解,为VDW磁铁的磁性应用开辟了可能性。
表面声波是局限于材料表面的机械波。这些波浪自然发生在地震期间,并且还经过设计用于微型设备,在传感和处理超高频率电信号中起着至关重要的作用。人造表面声波通常以数百MHz或更高的频率运行,波长在千分尺尺度上,并且表面位移的表面位移数百个皮仪 - 可与原子的大小相当。可以通过在压电材料上的互换能器的机电转换来进行这些波的激发。表面声波的损失可能很低,结合能够通过压电材料中的应变或电场将多个量子系统搭配到许多量子系统,最近已实现了量子声学领域的探索。在经典级别上,这种耦合都是可能的,其中大量相干的声子与量子系统相互作用,以及在量子级别,量子系统理想地耦合到单个声子。这不仅对量子物理学研究非常有意义,而且对于从量子传感到量子转导的应用,其中量子信号从一种类型的载体转换(例如光子)到另一个(例如声子)。在本文中,我们与GAAS上的表面声波一起工作,GAA既是压电材料,又是半导体。以这种方式,可以在托有Ingaas量子点的同一介质中生成表面声波,这些介质是光学活跃的量子系统。可以通过将声子限制在声腔中并将量子点放在光学微腔中以增强光学读数来增强表面声波和量子点之间的耦合。为此,我们在这里描述了一个包括声学腔和开放式光学微腔的平台,在不久的将来,该平台将用于使用Gigahertz表面声波和Ingaas Semicicductor量子点进行量子声学实验。由于多种损失机制,高铁表面声波腔的制造并不是微不足道的。由于系统的复杂性,有限的元素模拟是耗时的,并且不容易执行。因此,高铁表面声波腔的制造通常涉及基于迭代样品制造和表征的优化过程。在我们的情况下,我们通过电子束光刻和Al上的Al上的AL纳米表面声波杆纳米表面的声波杆。这些空腔在1 GHz下运行,并包含用于表面声波激发的插入式传感器。在第2章中,着重于表面声波腔的表征,我们建立了基于纤维的扫描光学干涉仪,用于测量GHz表面声波的位移的幅度和相位,以及在声学空腔中成像它们的空间分布。表面表面声波腔的表征通常是通过使用相同的用于波激发的相同二聚体换能器的全电测量进行的。我们通过成像表面声波腔中的横向模式我们发现此方法不完整,并且可能导致误导信息,尤其是关于腔体内声场的分布。