简介。泰坦大气层与其表面之间的联系是独一无二的:它处于各种表面 - 大气过程的起源 - 液态甲烷流,波浪,降雨[1],沙丘运动,盐酸[2],尘埃[3]和雨暴风雨[4] - 在表面改变和大气动力学中都起着重要作用。有趣的是,泰坦的大气足以传播这些现象产生的声波。因此,可以通过记录其声学特征来定量和远程研究它们。的确,在板上毅力上具有超级骑士麦克风[5]的火星上已经证明了声学研究的巨大潜力[5],其中几个结果记录了近地面现象,例如湍流[6,7],风[8],尘埃[9]。但在泰坦上,由于声音传播条件的增强,这种潜力甚至更大:冷(〜90 K)和厚(〜1.5 bar)的表面大气(95%n 2,〜5%CH 4 [10])可以在长距离上维持声波,并吸收相对较低(见表。1)与火星或地球相比[11]。这种有利的环境激发了声学特性仪器赛车仪(API-V)在船上的船上载体下降模块,该模块成功地估计了下降期间和通过测量声速降落后的相对甲烷分数[12]。在2030年代中期,蜻蜓任务将探索赤道撞击火山口附近的泰坦,并带有可重新定位的旋翼飞机登陆器[13]。关键的地球物理和气象测量将由Dragmet套件(包括三个麦克风)组成的Dragmet Package提供[14]。为准备泰坦的声学探索,本研究旨在建模泰坦大气条件中的声音传播,以便能够估计水平
地球大气中声音的传播是一个复杂的物质,因为它始终不断变化的风和温度条件受到影响[1]。任何意图合成特定声音场室外的系统的设计,无论是为了准确复制声音还是控制,都必须至少必须意识到这种影响。最终目标是设计一个从户外音乐会取消声音的声场控制系统[2,3],我们在这项工作中实验研究了大气条件变化对扬声器传递功能的影响,该功能在较远的距离下测得。传递函数的可变性是估计静态和自适应声音轨道控制系统的鲁棒性和性能的关键因素。像地球大气这样的复杂介质中声音的传播是一个经过深入研究的范围(参见例如[1]进行严格的理论处理)。但是,有
摘要:大气中声音的传播受许多因素的影响,例如空气温度,相对湿度,空气速度和方向以及温度反转。声音强度在大气吸收和大气湍流的距离方面消失。很多次,在不同的大气条件下,很难确定等效声压水平(a)的值。识别由大气条件引起的变化而言,首选使用程序进行数学建模。在各种大气条件下的等效声压水平(a)的测量值的差异并不重要。在比较声音传播的有利和不利的大气条件时,等效声压水平的值(a)的值可能高达10 dB。显然在这些测量的条件下,例如相对湿度<95%,空气速度<3 m.s -1。本文旨在使用使用软件CADNA A对不同大气条件的影响进行建模,该软件用于外部噪声图的数学建模。
过去几十年,我们见证了大量致力于更好地了解户外声音传播的研究论文和出版物。这些方法从高度理论化的方法到实用的、基于测量的方法不等。然而,最近的三份出版物将这些研究的大部分内容整合成更易于引用的形式。这些是 E.M. Salomons (2001)、K. Attenborough、K. Ming Li 和 K. Horoshenkov (2006) 的文本以及欧盟资助的 Harmonoise/Imagine 项目的各种成果报告。所有上述文件的详细信息都列在本文件正文的参考书目部分。强烈建议感兴趣的读者参考这些出版物,以更深入地讨论本附录中仅以摘要形式讨论的主题。