2022 年 8 月——在全球气候变化的背景下,以及世界各国政府普遍推动各自能源部门向更可持续的发电组合转型的背景下,巴巴多斯政府正在大力推进其发电结构转型。巴巴多斯 2019-2030 年国家能源政策 (BNEP) 制定了一项新计划,旨在到 2030 年实现 100% 可再生能源 (RE) 和碳中和转型目标。为了实现这一目标,巴巴多斯认识到必须提高电网的弹性,以便能够处理可再生能源资源的不断整合,并确保维持电力质量和可靠性。此外,由于一些可再生能源(例如太阳能和风能)是间歇性的,这意味着它们只能在特定条件下使用,因此巴巴多斯的电网需要能够有效地储存能源,并在发生意外故障或能源发电短缺时获得足够的备用容量。在美国国际开发署 (USAID) 的支持下,国家监管公用事业委员会 (NARUC) 正在支持巴巴多斯公平交易委员会 (FTC) 实施与 BNEP 规定的能源改革相一致的长期可再生能源整合工作。2021 年,NARUC 开始向 FTC 提供技术援助,以制定《储备能力和弹性法规》草案。此类法规将为 FTC 提供必要的框架,以确保公用事业公司采取措施确保系统的可靠性、弹性和资源充足性,因为巴巴多斯致力于实现其能源部门目标。可再生能源在巴巴多斯能源部门的机会与加勒比地区的许多邻国一样,巴巴多斯岛几乎完全依赖进口化石燃料产品来发电(包括重质燃料油、柴油和煤油)。 1 对进口燃料的依赖使其容易受到高度波动和不确定的电力成本的影响,政府打算通过 BNEP 制定的长期电力部门改革来改变这种状况。由于靠近赤道,巴巴多斯拥有丰富的可再生能源资源,包括良好的风速和太阳辐照度。 2 这些资源表明,巴巴多斯有巨大的潜力从高度依赖昂贵的外国化石燃料转向 100% 国内可再生能源供应。为了更好地了解巴巴多斯能源部门可再生能源的一些机会以及 FTC 在实现 BNEP 目标方面取得的进展,我们采访了巴巴多斯 FTC 的首席执行官 Marsha Atherley-Ikechi 博士,她负责监督巴巴多斯能源部门监管框架的制定。她自 2004 年以来一直受雇于 FTC,从水分析师做起,一直晋升到目前的职位。2011 年,Dr.Atherley-Ikechi 参加了由美国国际开发署资助、由 NARUC 主办的可再生能源实习计划。该实习计划旨在将实习生配对到美国监管委员会,帮助发展中国家的监管机构直接通过监管推动可再生能源的部署,并获得成为国家政策决策资源所需的技能和知识。
回顾与分析世界各地的 Power-to-X 路径示范项目 作者:Zaher Chehade 1、Christine Mansilla 2*、Paul Lucchese 1,2,3、Samantha Hilliard 4、Joris Proost 5 隶属关系:1 Capenergies,法国;2 CEA,巴黎萨克雷大学,法国;3 IEA Hydrogen,法国;4 Clean Horizon,法国;5 天主教鲁汶大学,比利时新鲁汶;* 通讯作者:christine.mansilla@cea.fr 摘要 只有通过低碳能源、能源效率和能源部门的结合,才能实现能源系统向更可持续的方向转变。在这种背景下,过去十年中,应用电转氢概念来管理需求、提供季节性储存和连接不同部门之间的元素引起了人们的极大兴趣。示范是迈向大规模市场的关键第一步。本文介绍了对 32 个国家的 192 个 Power-to-X 示范项目的审查结果。结果表明,示范项目的特点多年来发生了显著变化:PEM 和碱性系统的电解能力都有所提高,而且通过电网连接示范越来越多地研究平衡和辅助服务的潜力。Hydrogen-to-X 途径的范围也多年来不断发展,主要包括工业应用。这项工作是在 IEA 氢能技术合作计划第 38 项任务的指导下开展的。 关键词 电转氢;氢转 X;电转气;可再生能源;示范;中试工厂 1. 简介 将能源系统转变为更可持续的系统,并根据巴黎 COP21 协议 [1] 大幅减少二氧化碳排放,是国家能源政策的指导原则。 197 个缔约方中的 175 个批准了 COP21 协议 [1],其目标如下:将全球变暖控制在比工业化前水平高 2°C 以内,并争取将增幅限制在 1.5°C 以内,尽快使全球排放达到峰值,并根据现有的最佳科学成果减少排放。发展中国家将获得支持以适应这些目标,缔约方还将制定具体的气候行动。以欧洲为例,气候目标包括三方面 [2]:i/ 与 1990 年的水平相比,温室气体排放量应至少减少 20%(2020 年)、40%(2030 年)和 80%(2050 年);ii/ 可再生能源在总能源消耗中应至少占 20%(2020 年)、32%(2030 年);iii/ 能源效率应至少提高 20%(2020 年)、27%(2030 年)。这种转变是艰巨的,需要利用所有手段,即低碳能源、能源效率和能源部门耦合的结合[3]。由于可再生能源在能源结构中的渗透率不断提高,平衡发电和电网稳定的需求变得越来越具有挑战性。建立输电超级电网、智能电网和需求管理或备用容量实施等解决方案可以帮助克服这一问题
一年 𝐵𝑎𝑡𝑡 𝑠𝑝𝑎𝑟𝑒 𝑐𝑎𝑝 电池中的可用备用容量 𝐵 𝑜𝑢𝑡𝑝𝑢𝑡 可用电池输出 𝐶 𝐸 特定能耗 𝐶𝐴𝑃𝐸𝑋 特定资本支出 𝐶𝑜𝑠𝑡 𝑃𝑉 光伏供电特定电力成本 𝐶𝑜𝑠𝑡 𝑔𝑟𝑖𝑑 电网供电特定电力成本 𝐶𝑜𝑠𝑡 𝑏𝑎𝑡𝑡 电池特定电力成本供应的电力 𝐶𝑜𝑠𝑡 𝑆𝐸 (𝑔𝑟𝑖𝑑) 电网辅助制氢系统的特定电力成本 𝐶𝑜𝑠𝑡 𝑆𝐸 (𝑏𝑎𝑡𝑡) 电池辅助制氢系统的特定电力成本 𝐸 𝑔𝑒𝑛 光伏发电能量 𝐸 𝑔𝑒𝑛,𝑠𝑐𝑎𝑙𝑒𝑑 缩放的光伏发电概况 𝐸 𝑔𝑒𝑛,𝐺𝑟𝑜ß𝑒𝑛𝑔𝑜𝑡𝑡𝑒𝑟𝑛 Großengottern 的光伏发电量 𝐸 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑,𝑃𝑉 直接供应给电解器的光伏能源 𝐸 𝑃𝐸𝑀 电解器所需的能源 𝐸 𝑔𝑟𝑖𝑑 从电网获取的能源 𝐸 𝑒𝑥𝑐𝑒𝑠𝑠 可用的过剩光伏能源 𝐸 𝑐ℎ𝑎𝑟𝑔𝑒𝑑 充入电池的能量 𝐸 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 从电池中释放的能量 F 法拉第常数 𝐹𝐿𝐻 𝑃𝑉 PV 提供的满负荷小时数 𝐹𝐿𝐻 𝐵𝑎𝑡𝑡 电池提供的满负荷小时数 𝑓 𝐻2 氢气生产率 𝛥𝐺 吉布斯自由能变化 𝛥𝐻 焓变化 HHV 较高热值 𝐻 𝑎𝑐𝑡𝑢𝑎𝑙 实际产生的氢气量𝐻 𝑖𝑑𝑒𝑎𝑙 可生产的最大氢气量 𝐼 𝑐𝑒𝑙𝑙 电池电流 𝐼 𝑀 电解模块电流 LCOS 平准化存储成本 𝜂 𝐸 电解器效率 𝜂 𝐹 法拉第效率 𝑁 𝑐𝑒𝑙𝑙 电解器中的电池数量 𝑃 𝑃𝑉,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 所需峰值功率 𝑃 𝑃𝑉,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 Großengottern 的标称功率 𝑃 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 电解器的额定功率容量 Q 热量 r 折扣因子 𝛥𝑆 熵的变化 𝑆𝑜𝐶 电池的充电状态 𝑇 温度 𝑈 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟 电解器的利用率 𝑉 𝑟𝑒𝑣 可逆电池电压