注意 本文件由美国运输部赞助发布,旨在交流信息。美国政府对其内容或使用不承担任何责任。美国政府不认可产品或制造商。此处出现的贸易或制造商名称仅仅是因为它们被认为对本报告的目标至关重要。本报告中的调查结果和结论均为作者的观点,并不一定代表资助机构的观点。本文件不构成 FAA 政策。有关其使用,请咨询技术文档页面上列出的 FAA 赞助组织。本报告可在联邦航空管理局 William J. Hughes 技术中心的全文技术报告页面:actlibrary.act.faa.gov 以 Adobe Acrobat 便携式文档格式 (PDF) 获得。
摘要:随着复合材料在飞机上的应用越来越多,复合材料航空航天结构的结构健康监测 (SHM) 领域的进步取得了许多新的成功贡献。然而,其应用在航空工业的运营条件下仍然并不常见,主要是由于研究重点和应用之间的差距,这限制了向改进的飞机维护策略(如基于条件的维护 (CBM))的转变。在本文中,我们确定并强调了复合材料飞机结构 SHM 领域成熟的两个关键方面:(1) 需要对飞机结构健康管理进行整体损伤评估的飞机维护工程师,以及 (2) 将 SHM 应用升级到实际服役条件下的复合飞机结构。多传感器数据融合概念可以帮助解决这些问题,我们阐述了它的好处、机遇和挑战。此外,为了演示目的,我们展示了基于融合的 SHM 系统的概念设计研究,用于对代表性复合飞机机翼结构进行多级损伤监测。通过这种方式,我们展示了多传感器数据融合概念如何使社区受益,推动复合飞机结构的 SHM 领域向航空工业的 CBM 应用迈进。
Karl Brakora 是大峡谷州立大学的助理教授,也是 BT 工程公司的工程师。他曾研究过电路板的共形气相沉积 EMI/HPM 屏蔽、HEMP/HPM 的轻型复合飞机外壳以及非 GPS 定位系统和技术。此前,他于 2007 年至 2014 年担任密歇根州安娜堡 EMAG Technologies Inc. 的首席射频工程师。在那里,他致力于开发紧凑、低成本相控阵、超音速和高超音速弹药雷达指令制导的高速信号采集和处理以及先进的 PCB 封装技术领域的创新技术。此前,他是密歇根大学辐射实验室的研究生,他的研究重点是陶瓷原型技术、集成陶瓷微波系统以及超材料和光子晶体的应用。他为同行评审期刊撰写了四篇论文,并多次在会议上发表关于先进陶瓷制造技术在微波设备中的应用的演讲。 Brakora 博士拥有 5 项美国专利,并有多项未公开的专利和专利申请。
使用电弧增材制造 (WAAM) 作为铁镍 36 (Invar36) 合金航空航天工具的制造方法,是许多工具公司和复合飞机制造商越来越感兴趣的领域。然而,由于缺乏行业经验和最终零件质量先例,WAAM 技术的全面采用和利用受到阻碍。对于一些工具制造商来说,使用增材制造的 Invar 组件的可行性仍在研究中,因为对最终零件的关键材料特性尚不清楚。此外,实施增材制造对制造商内部运营的影响尚未得到广泛记录。虽然已经对 WAAM 技术、Invar 和新技术引入的变更管理进行了大量学术研究,但大部分现有文献并未提供取代航空航天工具制造商对实践经验的需求所需的具体信息。本研究将调查在航空航天工具制造中使用 WAAM Invar 组件(就最终部件质量和性能而言)的技术可行性,以及采用该技术的组织可行性和影响。本论文将描述在航空航天工具制造商的背景下评估 WAAM Invar 的一系列测试,并概述航空航天工具制造公司采用增材制造必须承认的一些关键组织影响。通过这项研究,我们希望证明将 WAAM Invar 用于航空航天工具应用的可行性。