摘要。在FESE/SRTIO 3中发现了高温超导性,这引发了人们对具有工程界面的新超导系统的重大兴趣。在这里,使用分子束外延生长,我们成功地制造了FESE/PBO X异质结构,并在三个不同的单层FESE相关界面中发现超导性。我们观察到在PBO X的两个不同阶段生长的单层FESE膜中的13〜14 MEV的超导间隙。此外,我们发现了一个新的绝缘Fe 10 SE 9相,具有有序的√5×√5Se-vacancy结构。我们的第一原理计算表明,这个新的绝缘阶段起源于电子相关性。有趣的是,在绝缘Fe 10 SE 9上生长的另外一部单层FESE膜也具有超导性,间隙尺寸为5 meV。我们的结果表明,单层FESE与底物之间的功能差异,可以诱导带弯曲和电荷转移,对于界面超导性至关重要。
wurtzite sc x al 1-x n/gan(x = 0.13 - 0.18)在C-平面GAN上通过分子束外延生长的多量子孔在技术中表现出明显的强和狭窄的近红外近红外近红外Intersubband Bander在技术上重要的1.8 - 2.4μm范围。带结构模拟表明,对于比3 nm宽的Gan井,量化的能量是由由固有极化场引起的传导带的陡峭三角形曲线设置的。结果,跨带的过渡能提供了独特的直接访问Scarn极化参数。测量的红外吸收表明,假定的晶格匹配的SC 0.18 Al 0.82 N/GAN异质结构的自发极化差异小于理论上计算的值。间隔频带过渡能对屏障合金组成相对不敏感,表明在探测为0.13 - 0.18 SC组成范围内净极化场的变化可忽略不计。
材料的低导热率是其潜在应用在高性能热电设备中的关键基本参数。在室温下实验可获得今元(GE 1 -x sn x)半导体薄膜的纯度低电导率。在宽松的GE 1 -x Sn X二进制合金中,导热率随着SN浓度的增加而降低,这主要是通过合金通过合金增加原子之间的原子间距离来解释。在宽松的GE 1 -x sn X中,从58 w m -1 k -1中明显降低了20次,从58 w m -1 k -1降低到≈2.5w m -1 k -1,观察到sn含量最高为9%。该热导率仅比最先进的热电材料(胞晶硒酸硒酸盐)高2倍。ge 1-x sn x是一种无毒的组IV型半导体材料,它是使用半导体行业标准表育观生长技术的标准硅晶片上的外延生长的。因此,它可以导致期待已久的高性能低成本热电产生器,用于在人类日常生活中的室温应用,并将为CO 2发射和绿色的电力发电中的全球效果做出重大贡献。
SIC是(Opto)电子应用的发展场中的关键组成部分,尤其是SIC-ON-ON-on-On-on-On-on-On-on-On-on-On-on-On-on-On-on-On-On-on-On-on-On-on-On-On-on-On-On-on-On-On-on-On-On-on-On-On-On-On-On-On-On-On-On-siC底物可以开发创新的光子应用和电气开关的新设备。因此,SICOI的制造引起了极大的关注,并且已经在1200°C以上的温度下进行了证明。为了维持互补的金属 - 氧化物 - 氧化型兼容性并避免埋入的SiO2层的扩散,需要低于1200°C的工艺温度。在项目的最后几个月中,FAU在1120°C在SI和SOI底物上通过CVD制造3C-SIC的FAU取得了显着结果。使用带有非水冷却的内部设置的水平冷壁CVD反应器实现了3C-SIC的外延生长。硅烷和丙烷在氢气中稀释,用作硅和碳源的前体气体。对SI底物进行了各种测试后,与高于1200°C的温度相比,由于较低温度下的碳种类分裂的降低,因此选择了6.8的C/Si比为6.8。底物之间的唯一区别是扩展冷倒入周期,这对于防止外延层从SOI底物中分层是必要的。
介绍了在惰性气氛下通过扫描隧道显微镜 (STM) 沉积和成像分子的方法和装置。评估了三种应用分子的方法:气相平衡吸附、升华和电喷涂。利用这些方法,各种有机和生物聚合物分子可以在石墨和在云母上外延生长的金 (111) 上沉积和成像。与使用高真空设备或手套箱等替代方案相比,这些程序具有一些重要优势:它们便宜、方便、更快速。当将巯基乙醇、乙醇胺、乙醇、乙酸和水以蒸汽形式引入扫描室时,它们会在金基底上产生二维晶体吸附层。据推测,这些吸附层涉及分子与表面形成的金氧化物之间的氢键合。将蛋白质溶液电喷雾到金表面可获得单个蛋白质分子的图像,其横向尺寸接近 X 射线分析测量的尺寸,厚度为 0.6-1.3 纳米。对于金属硫蛋白,可以重现观察到已知的分子内部结构域。在所检查的其他示例中,无法解析详细的内部结构。
薄膜................................................ .薄膜形成.................................... 6 凝聚和成核........................... 7 薄膜生长.................... ■ ................... 13 岛状阶段................................... 14 聚结阶段................................... 14 通道阶段.................... 即连续膜................................... , 1 6 生长模式........................................ 17 外延生长........................................ 19 薄膜分析技术................................... 2 0 X 射线衍射................................ 20 衍射仪方法................................... 22 薄层电阻................................... 23 四点探针法....... ' .............. 23 扫描电子显微镜.......................................2 6 俄歇电子能谱................................... 2 9 薄膜厚度测量....................... ..34 化学气相沉积.............'.................... 37 CVD 的基本步骤 .............................. 3 8 CVD 的实验参数 .................... 39 沉积温度 ........ 39 气体流速 .............................. 44 晶体取向 .............................. 47 基材位置 .............................. 48 反应物分压。................... 49 表面积 .............................. 49 化学气相沉积反应器 ................ 49 热壁反应器 ............................. 50 冷壁反应器 ............................. 50 大气压反应器 ............................. 50 低压 CVD 反应器。..'................. 52 等离子体增强 CVD 反应器 ............................. 54 光子诱导 CVD 反应器。.................. 55 钨的化学气相沉积 ................. .56 钨的 CVD 反应 .......................... 59 WF 6 的 Si 还原 ................................ 61
摘要 III 族氮化物和β 相氧化镓(β -Ga 2 O 3 )是目前研究较为深入的两种用于电力电子的宽带隙半导体材料。由于两种材料体系之间的晶格失配度相对较小,且可以利用体相 AlN、GaN 和β -Ga 2 O 3 衬底,因此已经实现了在β -Ga 2 O 3 上外延生长 III 族氮化物或反之亦然。然而,将两种材料体系集成在一起来设计功率器件仍然缺乏。本文数值研究了 AlN/β -Ga 2 O 3 异质结构,利用极化诱导掺杂来实现高性能增强型晶体管。受 AlN/β -Ga 2 O 3 界面极化效应的影响,沟道中的二维电子气浓度最高可达 8.1 × 10 19 cm −3。在沟道顶部引入p-GaN栅极,最终实现了具有可调正阈值电压的常关型AlN/β-Ga 2 O 3场效应晶体管。此外,我们插入了非故意掺杂的GaN背阻挡层以抑制漏极漏电流。最后,为了实现高性能III族氮化物/Ga 2 O 3基功率器件,我们进一步研究和分析了具有不同结构参数的器件的传输和输出特性。
2012 年至今 德克萨斯大学奥斯汀分校 Seth R. Bank 教授 研究生助理 先进半导体外延实验室 – 研究和开发使用分子束外延的高应变 III-V 和稀释双胺 III-V 半导体中红外(3-5 µm)光电材料和器件的晶体生长技术。 – 演示了具有无铝有源区的 GaSb 基 I 型二极管激光器的最长波长发射(>3.6 µm)。 – 演示了 GaInAsSbBi 合金的首次外延生长和首次室温光致发光。 – 开发了基于 III-V 的半导体激光器的器件生长和制造工艺。 – 设计和实施工具和技术来维护、修理和操作两个分子束外延系统,同时避免耗时的真空系统烘烤。 – 设计并建造了具有亚皮秒分辨率的泵浦探测传输测试台,用于测量半导体中的载流子复合寿命。 – 通过添加自动测试功能改进了多个实验测试站。 – 将未充分利用的实验室空间改造成傅里叶变换红外 (FTIR) 光谱和红外显微镜分析站。 – 监督和指导参加夏季和学期研究体验的八个人的工作。
在 (001) Si 平台上外延生长 III-V 激光器正成为低成本、节能和晶圆级光子集成电路的终极集成策略。随着在 III-V/Si 兼容衬底上生长的激光二极管的性能向商业化发展,外延 III-V 激光器和 Si 基波导之间的光接口问题变得越来越紧迫。作为替代方案,选择性区域生长在 Si 上产生无缓冲 III-V 激光器,从而从本质上促进与 Si 光子学的有效光耦合。由于选择性生长的无位错 III-V 晶体的尺寸通常限制在亚波长尺度,因此主要挑战在于实现电驱动激光器,特别是如何在不引起大的光吸收损失的情况下对金属触点进行图案化。在本篇观点中,我们简要概述了在 (001) Si 平台上选择性生长的最先进的 III-V 族激光器,并讨论了这种集成方法的前景,重点介绍了实现电驱动设备的前景。我们重点介绍了选择性异质外延提供的独特优势以及实际应用面临的挑战和潜在解决方案。
硅光子学产业的快速发展有望带来非电子技术前所未有的制造经济。除了大批量生产的潜力之外,硅光子学还为大规模光子处理架构开辟了可能性,而这在光纤或 III-V 族平台中是无法想象的 [1、2、3]。所有光子系统都需要光源。由于硅具有间接带隙,因此在室温下不易发光。因此,硅光子学的大部分研究都使用与光纤耦合的片上外部光源。使用外部光源会带来光纤封装和光纤到芯片插入损耗的巨大负担。人们已经投入了大量研究来开发用于硅光子的集成光源 [4]。每种方法都有优点和缺点。这些方法包括稀土元素掺杂(低亮度)、III-V 量子阱的晶圆键合 [ 5 ](非单片集成步骤)、III-V 量子点的外延生长 [ 6 ](专门的外延步骤)和锗的带隙工程 [ 7 ](低屈服应变工程)。所有这些方法