在气液界面 (ALI) 生长的分化原代细胞的转录谱与体内气道上皮非常相似,这表明使用原代培养物和存在气液界面对于重现气道上皮生物学非常重要。此外,不同人类供体内部和之间的气管和支气管来源细胞之间非常相似,这表明气道细胞具有特有的强大表达谱 [1]。因此,体外 ALI 模型被推荐用于研究呼吸道的生理和病理生理反应、分子事件以及不同细胞类型的作用方式和相互作用 [2]。分化良好的体外气道上皮培养物的特点是形成假复层上皮和相邻环境之间的屏障功能。尽管气道上皮细胞在塑料上的二维培养中不会分化,但它们在气液界面的多孔膜上生长时可以发生粘液纤毛分化。气液界面通过支持上皮细胞的分化来实现上皮细胞的极化[3]。
使用透皮药物递送装置局部施用的药物。这些是不同尺寸的药物制剂,其中包含一种或多种活性成分,旨在应用于不间断的皮肤,以便在穿过皮肤屏障后提供活性成分,并且避免了首次通过代谢。今天,大约74%的药物被口服服用,未根据需要有效。出现了提高疗效的透皮药物输送系统。与口服,局部,静脉内(IV)和肌肉内(IM)给药等其他方法相比,透皮药物输送的显着优势是将药物控制到患者系统中。通过使用封闭药物储存剂的多孔膜或利用患者的体内热融化嵌入粘合剂中的药物薄层来实现此受控释放。尽管有好处,但由于皮肤的有效屏障功能,经透皮药物的递送具有一定的局限性。只有小尺寸的分子才能有效地渗透皮肤,因此可以通过这种方法递送。
摘要:多孔膜技术因其对绿色化学和可持续发展的显着贡献而在分离和生物学领域引起了极大的关注。由多乳酸(PLA)制造的多孔膜具有许多优势,包括低相对密度,高比表面积,生物降解性和出色的生物相容性。结果,它们在各种应用中表现出有希望的前景,例如石油 - 水分离,组织工程和药物释放。本文概述了使用静电纺丝,呼吸图和相分离方法在制造PLA膜方面的最新研究进步。首先,从孔形成的角度阐明了每种方法的原理。讨论和汇总相关参数与孔结构之间的相关性,随后对每种方法的优点和局限性进行了比较分析。随后,本文介绍了多孔PLA膜在组织工程,油水分离和其他领域中的多种应用。这些膜面临的当前挑战包括机械强度不足,生产效率有限以及孔结构控制的复杂性。相应地提供了增强和未来前景的建议。
为了探索一价(K + 、Na + 和 Li + )和二价(Mg 2 + 、Ca 2 + )金属离子之间的离子选择性,Esfandiar 等人制作了一个带有 0.67 纳米狭缝的人工亚纳流体装置,揭示了复杂的尺寸排阻行为。[10] 尽管如此,当施加电压作为驱动力时,对离子选择性的机械理解被证明是不够的。[11] 受生物通道中超选择性离子传导的启发,人们对具有金属离子选择性电动传输功能的纳米多孔膜有需求。[12] 在这方面,具有窄孔径分布和最终厚度的固有多孔碳纳米膜(CNM)代表了分离和脱盐技术的一个有趣的平台。 [13,14] 传统的 CNMs 由自组装的三联苯硫醇 (TPT) 制成,可形成厚度为 1.2 nm 且孔径为 0.7 nm 的透水性膜,通过硫化物基团的空间效应和静电排斥,可完全排斥离子。[14] 另一方面,由联苯硫醇 (BPT) 获得的较薄的 CNMs (约 0.9 nm) 表现出较低的选择性水传输,同时 K + 和 Cl – 优先离子迁移
p 2.1使用聚合物固定的抗生物源膜的抗双源膜的制造和表征,使用聚合物J. kim - 韩国Kyungpook国立大学,韩国。118 p 2.2再生聚碳酸酯作为通过nips D. Breite制备膜制备的原始材料 - 莱布尼兹·伊斯蒂特·弗洛伊尔·奥伯夫弗罗夫·奥伯夫弗罗夫·乔chenmodi-fürfulächenmodi-fizierung(iom),德国。。。。。。。。。。。。。。。。。。119 p 2.3使用陶瓷膜触发器S. trepte-Fraunhofer Ikts,德国。。。。。。。。121 p 2.4交联对聚苯乙烯 - 二乙烯基苯基氯化物共聚物的性质的影响,基于燃料电池的Z.saraç-Gebze技术大学,化学工程,Türkiye。。。。。。。。。。。。。。。。。。。。。123 p 2.5季分化剂对多硫酮/mxene纳米复合物的离子构成性的影响。 Taşdelen-Yücedağ-吉布兹技术大学,化学工程,Türkiye。。。。。。。。。。。。。。125 p 2.6使用块共聚物D. Aydin -SelçukUniversity,Türkiye的受控多孔膜的形成和表征。。。。。。。。127 p 2.7将甲基蓝色染料转运到基于石墨烯的聚合物膜I. Gubbuk-SelçukUniversity,Türkiye。。。。。。。。。129
近年来,人们对物质的自组织进行了广泛的探索,在由不同聚合物材料(共聚物嵌段、均聚物混合物或两亲性聚合物)自组装而产生的多孔有序膜领域取得了重大进展。微组织膜中的层次有序结构,也称为蜂窝状(HC)结构,可显著提高材料的特定特性,从而增强材料的某些性能。自组装多孔膜的制备采用不同的方法。我们在此采用自下而上的微孔结构化方法,特别是呼吸图(BF)方法,从聚合物混合物中制备高度有序的膜。使用 BF 的首要动机是实施简单,并且适用于多种系统,这使其成为一种生产结构化表面的强大且廉价的技术。由 BF 形成的蜂窝状(HC)结构是水处理的潜在候选材料,可用作过滤膜来处理石油和天然气工业中遇到的稳定油水乳液。与商用均聚物膜相比,均聚物共混物的使用提高了选择性、渗透性和抗污性能。本演讲将重点介绍通过 BF 制备自组装均聚物膜共混物及其在工业废水清洁中的性能和污染/再利用潜力。关键词:微孔表面;聚合物共混物;呼吸图;水处理
解码宇宙基因蓝图:得益于纳米孔 [5] 测序技术,在太空深处,甚至 DNA 也能揭示其秘密。牛津纳米孔公司的 MinION 等设备配备了纳米材料,可以实时解码遗传信息。通过利用纳米孔,我们可以揭示生命本身的基因蓝图,帮助我们理解从适应微重力的细菌到潜在的外星生命形式的各种生物。用纳米级帆推动梦想:“突破摄星”是一项富有远见的计划,设想一支由石墨烯(一层碳原子)制成的超薄帆(Starchip)推动的纳米飞行器舰队。当被激光能量击中时,这些帆将开始星际旅行,突破传统推进的极限。未来的宇宙风由纳米级线编织而成,可以带我们飞向星空。打造太空服技术的未来:即使在最恶劣的环境中,纳米技术也能增强我们的保护。加固了纳米涂层的太空服不仅仅是一种服装,更是人类能力的延伸。这些涂层具有自清洁功能,可防止有害紫外线辐射,并具有最佳的热管理功能,可确保宇航员在探索未知领域时安全舒适。收集能量并确保纯度:由压电纳米材料驱动的纳米发电机可从太空的振动和温度变化中捕获能量。这些创新机器为传感器、设备和通信系统提供动力,扩大了我们任务的范围。此外,纳米技术还加入了水净化的探索,采用纳米多孔膜和纳米复合材料来确保每一滴水都可以安全饮用——这是长期任务的必需品。
心血管疾病的发病率在世界范围内不断上升。器官芯片和人类多能干细胞 (hPSC) 技术有助于克服心脏体外模型中的一些局限性。本文介绍了一种双室单片心脏芯片装置,该装置可在单个制造步骤中实现多孔膜集成。此外,该装置包括开放式隔间,可轻松将 hPSC 衍生的心肌细胞和人成体心脏成纤维细胞共培养成几何定义的心脏微组织。该装置可以用玻璃密封或带有完全定制的 3D 打印热解碳电极的盖子可逆地关闭,从而可以对心脏微组织进行电刺激。下方的微流体通道允许对心脏微组织进行局部和动态药物给药,如对异丙肾上腺素的变时性反应所示。此外,微流体通道还可以填充人类诱导多能干细胞衍生的内皮细胞,从而允许在一个装置中共培养异型心脏细胞。总体而言,这项研究展示了一种新型心脏芯片模型,该系统将开放式顶部装置与 3D 打印碳电极系统地集成在一起,用于电起搏和心脏组织培养,同时实现主动灌注和动态药物给药。人类心脏芯片模型工程方面的进步代表着将器官芯片技术作为临床前心脏药物开发的常规方面迈出了重要一步。
本文提出了两种沉积方法,用于生成具有PECVD反应器中“零”残留应力的SIN X层:高频模式下的混合频率和高功率(13.56 MHz)。传统上,混合频率模式通常用于产生低应力SIN X层,替代使用HF和LF模式。但是,由于LF模式的沉积速率较低,因此混合频率的组合沉积速率非常小,以产生同质的SIN X层。在第二种方法中,使用了高达600 W的高功率,也可能产生较低的残余应力(0-20 MPa),其沉积速率较高(250至350 nm/min)。较高的功率不仅会导致更高的气体解离速率,从而导致较高的沉积速率,而且在SIN X膜中带来了较高的n键,以及来自SIN X膜的较高体积膨胀的较高压缩应力,从而补偿了拉伸应力并产生低残余应力。此外,本文还研究了其他重要参数的影响,这些参数对残余应力和沉积速率有很大影响,例如反应剂气体流速和压力。通过使用最终优化的配方,基于低应激SIN X层成功制造了KOH和氮化硅悬臂的各向异性湿蚀刻层的掩蔽层。此外,还制造并测试了具有400nm孔的纳米孔膜。通过在纳米多孔膜顶部培养小鼠D1间充质干细胞,结果表明小鼠D1间充质干细胞能够生长良好。这表明纳米方膜可用作与活细胞接口的平台,成为生物分子分离的生物胶囊