在用于液晶显示的背光系统中,缺乏极化性能的传统红色,绿色和蓝色(RGB)光源可能会导致通过偏振层的光学损失高达50%。为了解决这一效率并优化能源利用,本研究提出了一种用于RGB极化排放的高性能装置。该设备采用了具有固有极化能力的半极蓝色的阵列,并与绿色发射CSPBBR 3纳米棒的机械拉伸膜结合使用,并发射红色发射CSPBI 3 -CS 4 PBI 6 PBI 6混合纳米晶体。聚合物膜中的CSPBBR 3纳米棒提供了内在的极化发射,而稳定的CSPBI 3 -CS 4 PBI 6 PBI 6混合纳米晶体形成的对齐的结构则有助于实质性各向异性排放,这是由于它们的高dieLec-Tric-tric常数。所得设备的RGB极化度分别为0.26、0.48和0.38,并展示了宽色范围,达到了NTSC标准的137.2%和REC的102.5%。2020标准。当使用C-平面LED进行激发的设备时,当前方法将通过偏光层传播的光强度增加了73.6%。含有RGB组件的极化设备的这种新颖的制造方法对推进下一代展示技术具有相当大的希望。
如果初次阅读时觉得本文的结构有些混乱,那是因为有些考虑被故意拖延了。我们希望在后续阅读中,原因会变得清晰。在第 2 节中,我们定义了符号,介绍了散射问题的离散化,将 FMM 与更熟悉的快速算法联系起来,并介绍了 FMM 的基本分析工具。第 3 节给出了 FMM 实现的详细说明(除了算法的一些重要参数的选择)。在展示该方法的结构之后,第 4 节将分析这些参数(多极展开中使用的项数以及远场量制表的方向)。标量问题的算法已经完全定义,我们在第 5 节中展示了应用于矢量(电磁)散射所需的微小修改。在结束之前,第 6 节给出了 FMM 背后分析的物理解释。
1 加拿大国家研究委员会,加拿大安大略省渥太华 K1A 0R6 2 多伦多大学物理系,加拿大安大略省多伦多 M5S 1A7 3 瓜达拉哈拉大学物理系,墨西哥哈利斯科州瓜达拉哈拉 44420 4 湖首大学物理系,加拿大安大略省桑德贝 P7B 5E1 5 马克斯普朗克光物理研究所,德国埃尔朗根 91058 6 俄罗斯科学院应用物理研究所,俄罗斯下诺夫哥罗德 603950 7 德克萨斯 A&M 大学量子科学与工程研究所,美国德克萨斯州学院城 77843 8 德克萨斯 A&M 大学物理与天文系,美国德克萨斯州学院城 77843 9 德克萨斯 A&M 大学生物与农业工程系, Texas 77843, USA 10 Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 马德里, 西班牙 * 通讯作者: lsanchez@fis.ucm.es
超表面应用数量的不断增长以及其制造和特性的快速发展[30]促使人们开发出精确分析和设计超表面的方法。虽然全波数值解始终是一种选择,但分析工具可能更具吸引力,因为它们有助于设计并提供有关超表面底层物理的宝贵见解。对于每个单位晶胞由单个散射体组成的周期性超表面,即我们在此重点讨论的超表面类型(图1),有几种用于此目的的技术。首先,开发了可理解的超表面和超材料电路模型[31–33],这些模型易于在工业中使用,尤其是对于微波应用。第二种方法遵循均质化原理。它旨在用具有相同表面磁化率的表面替换有问题的超表面。[34–36]尽管这些方法对组件设计非常有帮助,但它们不足以描述所研究结构的内部物理特性,例如组成粒子的相互作用。此外,电路建模和均质化方法有时会涉及一些假设,这些假设会以牺牲准确性为代价来简化所研究的问题。第三种方法更多地来自“第一性原理”,旨在通过求和其组成粒子的响应,自下而上地构建二维阵列的响应。虽然这种自下而上的方法与最初提到的两种方法有一些共同之处,但它更通用、更灵活。它使大量设计更容易处理,包括毫米波和光学应用。[7,37–44] 在这种方法中,最好使用场的多极展开来讨论组成粒子的光学作用。[45–51] 在多极展开中,散射体的光学响应用一系列由外部照明和形成超表面的所有其他粒子的散射场引起的多极矩来表示。使用不断增加的
1 30 32 通道阵列 208 4x8 四极管 117 2 75 32 通道阵列 737 4x16 多极管 236 3 75 32 通道阵列 482 4x16 多极管 51 4 75 32 通道阵列 870 丢弃 4x16 多极管 5 87 未植入 N/A 2x32 多极管 150 6 303 32 通道阵列 533 4x16 多极管 123 7 30 否 N/A 否 N/A 8 30 否 N/A 否 N/A 9 30 否 N/A 否 N/A 10 30 否 N/A 否 N/A 11 30 否 N/A 否 N/A 12 30 否 N/A 否 N/A 13 87 否 N/A否 N/A 14 87 否 N/A 否 N/A 15 30 32 通道阵列 N/A 4x8 四极管 N/A 16 30 32 通道阵列 N/A 4x8 四极管 N/A 17 75 32 通道阵列 N/A 4x16 多极管 N/A 18 75 32 通道阵列 N/A 4x16 多极管 N/A 19 87 否 N/A 否 N/A 20 87 否 N/A 否 N/A 157
1 英国伦敦弗朗西斯·克里克研究所感觉回路和神经技术实验室 2 英国伦敦大学学院神经科学、生理学和药理学系 3 德国海德堡马克斯·普朗克医学研究所行为神经生理学 4 德国海德堡大学医学院解剖学和细胞生物学系 5 英国伦敦弗朗西斯·克里克研究所皮质回路实验室 6 德国哥廷根马克斯·普朗克实验医学研究所神经遗传学系 7 德国柏林夏洛特医学院神经科学研究中心感觉门控和皮质下-皮质相互作用 8 英国南安普顿大学电子与计算机科学学院电子前沿中心 9 英国伦敦帝国理工学院生物工程系 10 美国华盛顿大学生物结构系WA,美国 11 皮质回路,地中海神经生物学研究所,艾克斯-马赛大学,法国马赛 12 现地址:英国伦敦帝国理工学院生物工程系。13 同等贡献 ∗ 任何通讯作者均应致函。
目的:多极颅内电刺激 (iEBS) 是一种有潜力改善单极和双极 iEBS 临床应用的方法。目前用于研究多极 iEBS 的工具是专有的,入门成本高,缺乏管理不同刺激参数和电极的灵活性,并且可能包含必要的探索性研究不需要的临床特征。这是限制理解和有效应用多极 iEBS 的一个因素。为了应对这些挑战,我们开发了自适应等时神经刺激生物电路由器 (BRAINS) 板。方法:BRAINS 板是一种经济高效且可定制的设备,旨在使用常见的研究电极设置在 16 通道电极阵列上进行多极刺激实验。BRAINS 板与微控制器接口,允许用户将每个通道配置为阴极或阳极输入,建立接地连接或保持浮动状态。该设计优先考虑易于集成,利用微控制器和模拟信号隔离器等标准工具,同时提供根据实验条件自定义设置的选项。它还确保输出隔离,降低噪音,并支持远程配置更改以快速切换电极状态。为了测试该板的功效,我们对单极、双极和多极刺激方案进行了台式验证。在小鼠初级视觉皮层中体内测试了相同的方案,并使用神经像素记录进行测量。主要结果:与单独的隔离刺激器的基线性能相比,BRAINS 板在均方根误差 (RMSE) 噪声或信噪比方面没有显著差异。该板支持以高达 600 Hz 的速率更改配置,而不会引入残余噪声,从而实现时间多路复用多极刺激所需的高频切换。意义:BRAINS 板代表了探索性脑刺激研究的重大进步,它提供了一种用户友好、可定制、开源、21 且具有成本效益的工具,能够进行复杂、可重复和精细控制的刺激实验。22 BRAINS 板具有有效的实时信息处理和高效的参数探索能力,23 可以增强对 iEBS 的探索性研究,并改善多极和闭环 iEBS 的临床应用。24
结节性硬化症复合物(TSC)是一种令人衰弱的发育障碍,其特征是多种临床表现。TSC是由TSC1或TSC2基因中的突变引起的,该突变分别编码了Hamartin/tuberin蛋白。这些蛋白质充当异二聚体,对雷帕霉素复合物1(MTORC1)的机械靶标进行负调节。TSC研究集中在MTORC1(一个关键信号中心)对调节包括代谢,细胞生长,翻译和神经发生在内的各种细胞过程的影响。然而,TSC2的非典型功能尚未得到很好的研究,并且对影响这些功能的突变的潜在潜在的生物学机制尚不清楚。我们观察到TSC2突变体IPSC中的异常多极有丝分裂分裂。多极表型不受抑制剂雷帕霉素治疗的有意义的影响。我们进一步观察到TSC2突变形式的主要负活性在产生多极分裂表型中。这些数据扩大了TSC2功能和病理生理学的知识,这将与TSC患者的未来治疗高度相关。
有效和宽带向前散射对于元原子来说是重要的。强的竞争者包括具有定制多极含量的胶体纳米镜,以达到抑制后散射的适当干扰。我们考虑了由一百多个银纳米斑点组成的密集的等离子球。数值模拟提供了对多极矩在散射行为中起作用的作用的充分理解。它们是使用乳液干燥制造的,并具有光学特征。在整个可见范围内证明了强度和有效的前向散射。具有相等振幅和相位的电和磁偶极子共振。这种等离子球可以用作底部跨表面应用的元原子。
我们研究了在两个和三个耦合的平行Schrieffer-Heeger(SSH)波导阵列的边缘的多极拓扑孤子的形成。我们表明,耦合波导阵列中的波导间距(二聚体)中波导间距的独立变化导致其在几个具有不同内部对称性的多个拓扑边缘状态的边缘出现。新兴边缘状态的数量取决于拓扑非平凡的阶段的数组数量。在存在非线性的情况下,这种边缘状态引起了具有独特稳定性特性的多极拓扑边缘的家族。我们的结果表明,准二维拓扑结构之间的耦合基本上丰富了它们中存在的各种稳定拓扑边缘孤子。