磁振子电路(利用 SW 的系统)[10,11] 可能由 SW 传播的波导[12–15] 和交叉处的干涉区组成,例如,用于创建多数门。[16–20] 波导还可以与其他波导耦合 [21,22] 以实现逻辑运算。以这种方式,已经有可能演示 32 位磁振子全加器 [21] 和基于 SW 的近似 4:2 压缩器。[23] 另一种策略是使用宽铁磁膜区域进行 SW 操作,并使用窄波导作为 SW 输入。这种方法被用来重定向[24–26] 和处理 SW。[27–32] 这些系统的运行基于传入 SW 的干涉。因此,对 SW 传播的介质(折射率的磁振子当量)的局部修改对于设计和优化其功能至关重要。最近的研究表明,可以通过在所谓的逆向设计方法中引入缺陷[32]、在该区域之上放置可编程磁性元件[30]或利用非共线磁化纹理[33–35]来实现。这种基于干涉的策略似乎也有希望实现在 SW 上运行的物理神经网络。[30,33] 因此,干涉效应为开发基于 SW 的超 CMOS 解决方案开辟了一条有希望的道路。平面波穿过一组周期性间隔的障碍物(衍射光栅或孔)时会发生干涉,在近场产生特征衍射图案,在距输入孔径特定距离处重现光栅图像。这种现象被称为塔尔博特或自成像效应,早在 19 世纪就在光中观察到。[36] 由此产生的干涉图案称为塔尔博特地毯,我们最近从理论上证明这种效应也可以发生在 SW 上。 [37] SW 产生的 Talbot 地毯的性质在很大程度上取决于磁性材料的材料参数、几何形状、类型和厚度,以及波长、方向和外部磁场值等动态参数。在这里,我们利用了薄铁磁多模波导中发生的自成像现象,其中 SW 由周期性间隔的单模输入波导引入。进入多模波导的 SW 具有可控相位。特别是,我们提出了一类可重新编程的磁子块,可实现阵列索引操作。
摘要 - 这项研究报告了在高度多模型无芯光纤中使用飞秒激光铭文制造的4阶逐行线纤维Bragg Gragg Gragg(FBG)阵列,特别着重于实现实质性的多重功能。采用了超快速退火程序,从而使FBG传感器的边缘可见性的令人印象深刻的增强大约13 dB,这意味着显着改善了约4 dB。这种实质性的增强有助于在极端温度条件下多路复用FBG阵列的长期稳定性和性能。用于多路复用FBG阵列采用的系统制造方法可以保证阵列内每个单独的FBG的高信号效率比(SNR)。此FBG阵列旨在用于极端温度应用,以基于掺杂的光纤(包括SNR降解和温度诱导的边缘漂移)的传统FBG相关的限制。在高达1120°C的温度下进行测试证明了FBG阵列的稳定性,而不会在读数中发生波动。此外,它忍受了七个热周期,从500°C到1120°C,超过60小时,表现出出色的热稳定性。具有超快速退火方法的高度多路复用的FBG阵列对极端温度环境(例如钢制造)有希望,例如,精确且可靠的分布式温度监测必须进行。索引条款 - 超快速退火;无木纤维bragg graging;按线方法; Femto秒激光制造;高度多模波导。