“关于该主题的议程,对2019年10月31日发布的HERC MYT法规进行了详细讨论,促进HPGCL促进HPGCL要求降级,辅助消耗,辅助消耗,辅助消耗和次要燃料消耗的降级,并且由于单位的多次启动/停止,但通过单元的多次启动/停止,但经过同样的pets批准。MD/UHBVN指出,2019年的HERC MYT法规规定,除了panipat的HPGCL动力工厂以外,针对单位或单位单位运行的技术最低限度应为MCR负载或单位装置的生成站的55%。MD/HPGCL声称正在遵守上述法规。SCPP considered the agenda and acknowledged that finalization of procedure may take time so it was decided that provisional payment may be made to HPGCL, duly certified by SLDC HVPNL, on account of compensation for degradation of heat rate, auxiliary consumption and secondary fuel consumption due to part load operation and multiple start/ stop of units of their plants except Panipat TPS, as per the draft procedure submitted by HVPN to HERC,有可能与HERC批准的上述程序适用性的对帐/调整。”
这项研究介绍了TiO 2 @cu 2 O-Cus异质结构的发展和优化,随着氧化石墨烯(RGO)的减少增强,以有效地催化有机污染物的光催化降解,重点介绍IMI daCloprid。探索了两种配置,即TiO 2/rgo/cu 2 o-Cus和Cu 2 O-CUS/RGO/TIO 2,以突出材料分层对光催化效率的影响。RGO的战略整合优化了电荷转移,对于光催化至关重要。全面的特征技术,例如X射线衍射(XRD),传输电子显微镜(TEM),X射线光电子光谱镜(XPS),拉曼光谱和氮的吸附 - 吸附 - 吸收吸收等渗透疗法,为晶体结构,形式,表面化学性质和文学作用,提供洞察力。TIO 2 /RGO /CU 2 O-CUS构型在全谱(UV - VIS - IR)照明下显着优于其在光催化活性中的表现,这是由于改进的电荷载体动力学和复合材料之间的协同相互作用。值得注意的是,在模拟的太阳能照射下,imidacloprid的95%降解的TiO 2 /rgo /cu 2 o-cus组装标志着太阳能光催化的突破,用于光催化的突破,并表现出可回收性的可回收能力,可在多次启动后施加启动,以维持多个启动的启动,以维持良好的启动,并构成了多次启动。此外,与单独的紫外线和VIS辐射相比,这种配置表明降解效率增加了双重,强调了其快速污染物的去除能力。这项研究强调了材料层测序在开发高效光催化系统中的关键作用,并标志着环境补救技术的显着进步,该技术利用可再生能源的来源。
摘要。选择风电场布局优化方法很困难。由于难以准确重现目标函数,因此不同论文中优化方法之间的比较可能不确定。如果作者没有使用每种算法的经验,那么一篇论文中只有几位作者的比较可能不确定。在这项工作中,我们为风电场布局优化案例研究提供了算法比较,这些比较由开发这些算法或有其他使用经验的研究人员应用或指导的八种优化方法。我们向每位研究人员提供了目标函数,以避免由于目标函数的差异而导致相对性能的歧义。虽然这些比较并不完美,但我们试图通过让有使用每种算法经验的研究人员应用每种算法并提供一个共同的目标函数进行分析,更公平地对待每种算法。该案例研究来自国际能源协会 (IEA) Wind Task 37,基于拥有 81 台涡轮机的 Borssele III 和 IV 风电场。本案例研究中特别令人感兴趣的是存在不连续的边界区域和凹边界特征。所研究的优化方法代表了广泛的方法,包括无梯度、基于梯度和混合方法;离散和连续问题公式;单次运行和多次启动方法;以及数学和启发式算法。我们为每种优化方法提供描述和参考(如适用),以及优缺点列表,以帮助读者确定适合其用例的方法。所有优化方法的表现都相似,优化后的尾流损失值在 15.48% 到 15.70% 之间,而未优化的布局为 17.28%。发现的每种布局都不同,但所有布局都表现出相似的特征。所有布局的相似之处包括沿外边界紧密排列风力涡轮机、在内部区域松散排列涡轮机以及为每个离散边界区域分配相似数量的涡轮机。使用一种新的顺序分配方法,即基于离散探索的优化 (DEBO),找到了按年能量产量 (AEP) 计算的最佳布局。根据本研究的结果,使用优化算法似乎可以显著提高风电场的性能,但有许多优化方法只要正确应用,就可以在风电场布局优化问题上表现良好。