摘要:本文引入综合学习、多种群并行和参数自适应等思想,提出一种多策略自适应综合学习粒子群算法。该算法设计多种群并行策略,提高种群多样性,加速收敛;实现种群粒子交换与变异,保证粒子间信息共享;将全局最优值加入速度更新,设计新的速度更新策略,提高局部搜索能力;采用综合学习策略构造学习样本,有效促进信息交换,避免陷入局部极值;通过线性改变学习因子,设计新的因子调整策略,增强全局搜索能力;设计一种基于S型递减函数的自适应惯性权重调整策略,均衡搜索能力。最后,选取一些基准函数和光伏参数优化,该算法在10个函数中的6个上取得最优性能。结果表明,所提算法与粒子群优化的一些变体和其他算法相比,多样性、求解精度和搜索能力都有了很大的提高,为光伏发电这一复杂的工程问题提供了更有效的参数组合,从而提高了能量转换效率。
摘要:提出一种基于区间2型模糊逻辑控制器(IT2FLC)的动态高型控制(DHTC)方法,将其应用于光电跟踪系统,提高稳态精度和响应速度。在传统的多环反馈控制环中加入积分器,可以增加系统型数,从而加快响应速度,提高稳态精度,但存在积分饱和的风险。根据系统状态动态切换型数,可以在保留高型优点的同时避免积分饱和。模糊逻辑控制(FLC)可以根据输入的变化动态地改变输出值,具有响应速度快、处理不确定性能力强等优点。因此,本文将FLC引入高型控制系统,以FLC的输出作为积分器的增益来控制积分器的通断,达到动态切换型数的目的,并在实验中得到成功验证。 IT2FLC引入了三维隶属函数,进一步提高了FLC处理不确定性的能力。从实验结果来看,与T1FLC相比,IT2FLC处理不确定性的能力明显提高。另外,为了加快IT2FLC的计算速度,本文提出了一种改进的类型归约算法,即加权梯形Nie-Tan(WTNT)。与传统类型归约算法相比,WTNT具有更快的计算速度和更好的稳态精度,且已成功应用于实时控制系统,有很好的工程应用价值。最后,为了减少人为因素的干扰,提高系统的自动化水平,采用多种群遗传算法(MPGA)对FLC的参数进行迭代优化,提高了输出精度。在柔性快速反射镜(FFSM)实验平台上,对比了传统控制器、T1FLC及IT2FLC的控制效果,证明了IT2FLC-DHTC系统具有更快的响应性能、更高的稳态精度、以及更强的处理不确定性的能力。
摘要:本文提出一种基于区间2型模糊逻辑控制器(IT2FLC)的动态高型控制(DHTC)方法,将其应用于光电跟踪系统,提高稳态精度和响应速度。在传统的多环反馈控制环中加入积分器,可以增加系统类型,从而加快响应速度,提高稳态精度,但存在积分饱和的风险。根据系统状态动态切换类型,可以在保留高型优点的同时避免积分饱和。模糊逻辑控制(FLC)可以根据输入的变化动态地改变输出值,具有响应速度快、处理不确定性能力强的优点。因此本文将FLC引入高型控制系统,利用FLC的输出作为积分器的增益来控制通断,达到动态切换型的目的,并在实验中成功验证。IT2FLC引入了三维隶属函数,进一步提高了FLC处理不确定性的能力。从实验结果来看,与T1FLC相比,IT2FLC处理不确定性的能力明显提高。此外,为了加快IT2FLC的计算速度,本文提出了一种改进的类型降阶算法,称为加权梯形Nie-Tan(WTNT)。与传统降阶算法相比,WTNT具有更快的计算速度和更好的稳态精度,并已成功应用于实时控制系统,具有很好的工程应用价值。最后,为了减少人为因素的干扰,提高系统的自动化水平,采用多种群遗传算法(MPGA)对FLC的参数进行迭代优化,提高了输出精度。在柔性快速反射镜(FFSM)实验平台上,对比了传统控制器、T1FLC和IT2FLC的控制效果,证明了IT2FLC-DHTC系统具有更快的响应性能、更高的稳态精度和更强的处理不确定性的能力。
摘要 在本论文中,我们介绍了下一代神经质量模型的新颖扩展和应用。 Montbrió、Pazó 和 Roxin (MPR) 已证明,二次积分和放电 (QIF) 神经元集合的集体行为可以用平均膜电位和放电率来精确描述,从而将无限大的微观网络的问题维度降低为低维宏观描述。由于神经质量提供了平均膜电位的途径,因此它可以作为局部场电位和脑电图信号的指标。本论文的贡献之一是在 MPR 模型中实现短期突触可塑性(STP)。基于工作记忆 (WM) 的突触理论,我们在多群体设置中使用 QIF 网络及其精确的平均场边界重现了 WM 的机制。实验中观察到,神经质量模型在记忆加载和维持过程中表现出 β-γ 带的振荡,而我们在启发式模型中遇到空的 β-γ 带。此外,我们指出了这些功率带是如何由基频之间的共振形成的,并与记忆中保留的元素数量相关。我们还对大约五种元素的最大 WM 容量进行了分析估计。第二个贡献是应用多种群模型来检验癫痫发作传播的临床假设。我们使用从健康受试者和癫痫患者的扩散 MRI 扫描获得的结构连接组。我们描述了如何将类似癫痫发作的事件建模为从低活动状态到高活动状态的募集。外部输入可以触发此类事件并导致一系列招募,从而模仿危机的时空传播。数值结果表明,癫痫患者对延长招募事件比健康受试者更敏感。我们还发现,我们的模型中首先招募的大脑区域与招募的次级网络的手术前评估之间存在良好的一致性。作为第三个贡献,我们使用慢-快动力学研究了 STP 存在下的神经网络和质量。根据施加到群体的慢周期电流的幅度,集体行为可以处于亚阈值振荡状态,也可以处于爆发状态,即在准静态漂移和大幅度快速振荡之间交替。这两个区域之间有一个狭窄的参数间隔,就像鸭子爆炸一样。在这个区域,我们报告了跳跃式鸭翼,它接近通常排斥的不变集。对于中间时间尺度分离,爆发通过混合型环面鸭翼组织的尖峰添加机制以连续的方式出现,其轨迹接近排斥平衡和极限环家族。为了实现更强的时间尺度分离,连续过渡被跳跃式鸭翼阻挡。在神经团中观察到的机制也是导致网络爆发的原因。总而言之,本论文将下一代神经质量模型置于神经科学建模的更广泛背景中,并为未来的工作提供了新的视角。这包括考虑以下方法