自旋运动纠缠是许多离子阱量子计算机的核心。离子内部量子比特态之间的纠缠是通过离子与离子之间的相互作用产生的。这些相互作用由阱内的运动介导,并通过施加自旋相关力进行调制 [1-6]。为了避免光谱拥挤问题,门在强激发状态下运行,其中施加的自旋相关力是脉冲的,或者施加的速度比离子的运动模式周期快得多 [7-10]。这些脉冲力称为自旋相关冲击 (SDK),它们动态地将动量传递给离子,而冲击的方向取决于离子的内部量子比特态。先前的研究已经展示了具有超快脉冲的单量子比特和双量子比特门 [11-15]。虽然锁模激光器发出的单脉冲持续时间为皮秒,这对于在强激发状态下构建门很有吸引力,但单脉冲往往不会产生超精细量子比特的预期结果。已经使用共振激发以及受激拉曼跃迁执行了单脉冲操作。在共振情况下,使用单个超快脉冲以 98.1% 的保真度执行 π 旋转 [15],但该方案不能用于执行任意单量子比特旋转。使用 171 Yb + 超精细量子比特中受激拉曼跃迁的单脉冲单量子比特门受到有限量子比特分裂的限制,而使用单脉冲自旋相关踢 (SDK) 的双量子比特门保真度受到多光子跃迁的限制,这会产生不需要的高阶动量模式 [12-14]。在这两种方案中,为了实现高保真度的双量子比特门,需要比单脉冲持续时间长很多倍的多脉冲序列。这反过来又使双量子比特门比单激光脉冲中原子与光相互作用的持续时间更长。除了量子信息处理中的应用外,高保真度的自旋相关踢动也是一个关键特征
摘要:全球互联网基础架构的稳定性和可靠性在很大程度上依赖边界网关协议(BGP),这是一种重要的协议,可促进各种自主系统之间的路由信息交换,从而确保全球无缝连接。但是,BGP固有地具有对异常路由行为的敏感性,可能导致严重的连通性破坏。尽管做出了广泛的努力,但准确地检测并有效缓解了这种异常,这仍然是艰难的挑战。为了解决这些问题,本文提出了一种新型的统计方法,该方法采用了某些约束的中值绝对偏差,以主动检测BGP中的异常情况。通过应用高级分析技术,该研究为早期检测异常(例如Internet蠕虫,配置错误和链接故障)提供了强大的方法。这种创新方法已在经验上得到了验证,在识别这些破坏时,准确率为90%,精度为95%。这种高度的精度和准确性不仅确认了采用的统计方法的有效性,而且还标志着增强全球互联网基础架构的稳定性和可靠性的重要一步。