Mastercard 是一家全球支付行业的科技公司。我们通过支持电子支付(而非现金和支票)并使这些支付交易安全、简单、智能且易于访问,连接全球消费者、金融机构、商家、政府、数字合作伙伴、企业和其他组织。通过使用我们的知名和值得信赖的品牌系列(包括 Mastercard®、Maestro® 和 Cirrus®),我们提供广泛的支付解决方案和服务,使支付更轻松、更高效。我们运营一个多轨支付网络,为消费者、商家和我们的客户提供选择和灵活性。通过我们独特且专有的核心全球支付网络,我们切换(授权、清算和结算)支付交易。我们拥有其他支付功能,包括自动清算所(“ACH”)交易(批量和实时基于账户的支付)。利用这些功能,我们提供集成的支付产品和服务并捕获新的支付流。我们的增值服务包括网络和情报解决方案,使各方能够轻松、自信地进行交易,以及其他提供专有见解的服务,这些服务利用了我们对安全消费者和商家数据的原则性使用。我们对新网络的投资,例如开放银行解决方案和数字身份功能,支持并加强了我们的支付和服务解决方案。我们的特许经营模式为我们的核心全球支付网络设定了标准和基本规则,平衡了所有利益相关者的价值和风险,并允许他们之间的互操作性。我们的支付解决方案旨在确保全球支付生态系统的安全。
• 音频内容必须以 48khz 采样率的 24 位未压缩 (PCM) 数字音频交付。• 所有混音都应为近场混音,同时考虑家庭观看声音体验。• 音频信号不应包含嗡嗡声、杂音、失真、丢失、混叠、嘶嘶声和其他令人反感的伪影。• 使用 EBU-128 测量音频节目响度和真实峰值音频电平。• 所有音频录制/混音/母带制作都应按照专业标准在标准环境中完成。禁止使用视频编辑工具进行混音。• 对于配音节目,对话、音乐和效果应与画面同步。• 应避免使用过度处理/清理。• 对话质量在音质、音量等方面需要保持一致。• 整体音质应令人愉悦,没有明显的噪音或杂散信号。• 所有音频通道从头到尾都应同相。• 禁止从单声道升频到立体声、立体声升频到 5.1、5.1 升频到全景声。提交的作品必须为原始混音状态。• 在所有制作场景中录制狂野氛围,以便在主程序中编辑的整个场景中保持相同的氛围。• 必须使用多轨录音机进行现场录音。录音参考电平应为 -20 dBFS
EUSPA安全的SATCOM市场和用户技术报告有助于相关的公共和私人参与者确定商机,为发展市场奠定了基础,并能够从欧盟和全球范围内从卫星通信中实现收益。安全的卫星通信(SATCOM)对于欧盟及其成员国的韧性和战略自主权至关重要。这是安全和安全任务和运营的基础,支持危机管理,监视任务,保护关键基础设施和情境意识。安全的SATCOM服务也广泛用于各种应用程序中,包括对偏远地区,海上紧急情况和空中交通管理的自然灾害,远程医疗和远程医疗服务的反应。在这种情况下,随着GovSatcom和Iris 2的进行,欧洲太空计划(EUSPA)的专家制作了有史以来首个安全的SATCOM市场和用户技术报告。这项长期研究旨在帮助相关的公共和私人参与者确定商机,为发展市场奠定基础,并在欧盟和全球范围内从卫星通信中实现收益。该报告包括两个部分:(i)安全的SATCOM市场和(ii)安全的SATCOM用户技术章节。安全的SATCOM市场分会对各种相关SATCOM用例进行了全面审查。用户技术章节概述了当前塑造行业的技术。报告亮点和趋势它确定了关键趋势,例如高通量卫星系统(HTS)提供的能力和数据速度的提高,多轨和多波段终端的部署,光学通信,互操作性,互操作性和标准标准。
摘要自1911年发现超导性以来,追求高过渡 - 温度(T C)超导体一直是凝结物理学的核心重点。在丘比特和基于铁的超导体中的突破性超过了40 K麦克米兰极限,并将其确定为高温超导体。在2019年,在平面 - 平面无限层镍酸盐薄膜中报道了超导性,尽管t c <40 k。2023年,在高压加工的高压力摄入量下,biLayer ruddlesden-popper(RP)镍的液体氮气 - 温度超导率。在这里,使用巨大的氧化原子层逐层外观(goall-epitaxy)[1],我们报告(LA,PR)3 Ni 2 O 7膜中的环境压力超导性[2],具有40 k的发作t c。超导体 - 绝缘体过渡阶段图[3]。角度分辨光发射光谱(ARPES)测量[4,5]揭示了孔掺杂孔的多轨fermi表面。沿着布里渊区的对角线发现具有颗粒 - 孔对称特性的温度依赖性能隙[6]。这些环境压力镍超导体为揭示高温超导性机制提供了一个新的平台。参考文献[1]国家科学评论,NWAE429(2024)。[2]自然,doi:10.1038/s41586-025-08755-Z(2025)。[3] Arxiv:2502.18068。[4] ARXIV:2501.09255。[5] ARXIV:2501.06875。[6] ARXIV:2502.17831。查询:3943 6303
Prosiebensat.1扩展了与SES的合作伙伴关系,2025年2月28日 - SES宣布了与Prosiebensat.1的协议多年延长。根据该协议,Prosiebensat.1将继续在其19.2度东部的Prime Video社区中使用SES的卫星在德国和奥地利分发其计划。此外,Prosiebensat.1将将其在德国流媒体平台的内容与SES的HD+电视应用程序集成在一起。在德国市场中,该协议扩展了Prosiebensat.1的卫星容量和上行链路服务,用于分发其高清渠道。此外,两家公司之间的HD+合同得到了扩展,因此Joyn的系列,节目,原创作品和独家产品将集成到SES的HD+电视应用程序中。Read more Telesat Partners with Intellian to Develop Ka-Band Flat Panel User Terminals for Telesat Lightspeed LEO Constellation 27 February 2025 – Telesat and Intellian, a global leading provider of satellite communication antennas and ground gateway solutions, today announced a contract award for Intellian to design and manufacture Ka-band flat panel User Terminals for the Telesat Lightspeed Low Earth Orbit (LEO) constellation.根据本协议,正在设计和制造全面优化的teleasat Lightspeed网络的KA波段LEO平板,以便为包括固定企业应用程序,无线回程,政府,土地移动性和海上连接的市场提供高速吞吐量。Intellian受到全世界客户的信任,以其出色的可靠性和质量而闻名。他们在主动电子扫描阵列(AESA)平板用户终端方面的技术创新和专有进步推动了Intellian's Portfolio的扩展,该投资组合现在采用了最新的开创性Ka-band Aesa技术。阅读更多SES的O3B MPOPER现在通过NSPA的MGS通过2025年2月27日为政府提供连接服务 - 继北约支持和采购机构(NSPA)的2024年合同奖励后,SES开始为卢森堡和美国政府通过其O3B Mpower Constellation提供中型地球轨道(MEO)全球服务。被称为MEO Global Services(MGS),该合同是由美国和卢森堡发起的NSPA全球商业签约SATCOM支持合作伙伴(GCC SATCOM SP)授予的,允许北约成员和北约合作伙伴参与一致性,以共识共识,以建立完全管理的低级低层竞争,高级通信,高级通信,并利用全体管理的低层竞争。SES的MEO连接使政府组织,机构和军队可以在全球陆上,海上和空中进行全球任务,以运行实时应用程序,例如高清视频通话,以及在后台可靠的其他数据密集型应用程序的同时下载。阅读更多COMTECH揭幕了全球通信技术领导者Comtech Telecommunications Corp. 26 2月26日,全球客户的新Eviphate 2.0多轨SATCOM平台,全球通信技术领导者Comtech Telecommunications Corp.今天宣布推出该公司新的Elevate 2.0 Multi-Orbit卫星通信(SATCOM”)平台。建立在该公司的现场预处理的多轨非常小的光圈终端(“ VSAT”)产品以及开发创新Satcom地面系统
抽象制作音乐作品提出了一系列独特的挑战,与视觉艺术形式遇到的挑战不同。音乐的时间性质需要熟练处理时间动态的模型。此外,组成通常包含多个曲目,每个曲目以其自己的时间复杂性为特征,要求对其相互依存的进化进行复杂的方法。与静态视觉图像不同,音符是测序的,通常组织成和弦或旋律,对专业时间顺序结构施加了要求。本文广泛地研究了Genai在连续生成对抗网络(GAN)领域的进化旅程,专门针对音乐构图量身定制。我们介绍了一套新颖的模型,精心制作,以解决音乐一代的细微差别,探索它们在生产复杂的多轨构图方面的功效。我们的调查集中在对这些模型的进化轨迹的全面分析中,审查了它们自主在各种轨道上产生凝聚力序列的能力。通过严格的经验评估,我们证实了模型产生令人信服的音乐节目的能力,而不是人类干预。此外,我们深入研究了复杂的技术讨论,阐明了推动发电过程的潜在机制,包括神经体系结构和训练方法的复杂相互作用。除了经验验证外,我们还进行了详细的用户研究,从而获得了对生成组成的主观感知的见解。此外,我们深入研究了音乐发电中人类合作的领域,通过无缝提供和谐的伴奏来揭示Genai对人类作品的补充潜力,从而弥合了艺术创造力和计算进步之间的差距。关键字:生成人工智能,音乐构图,进化,神经网络体系结构,长期依赖建模,跨学科协作,道德考虑,模型评估,音乐连贯性,表现力,表现力,创造性景观,文化丰富,技术丰富,技术进步,技术进步,轨道之间的互动,未来> 1。引言近年来,人工智能领域(AI)在产生各种形式的内容,利用技术(例如生成对抗性网络(GAN))方面取得了重大进步。尽管这些进步是值得注意的,但音乐作品带来了必要专业方法的独特挑战。与静态视觉艺术形式不同,音乐随着时间的流逝而展开,需要模型
匹兹堡大学通过基于扫描分解的基于扫描模拟的反馈 - 馈线控制执行摘要摘要大大降低了激光粉池床融合添加剂制造的融化池和微观结构的变化:管理当地几次对激光粉末床融合(L-PBF)添加剂生产性能的影响是最高核心的一项优先级。因此,该程序的目的是开发一种基于仿真的反馈馈电控制方法,以维持整个L-PBF部分的熔体池和微观结构的一致性。特定的研究目标包括:(1)基于通过不同过程参数产生的测量熔体池维度开发经过实验验证的计算流体动力学(CFD)模型; (2)开发有效的混合CFD和FEM(有限元方法)模型,以模拟多轨,多层方案; (3)开发基于迭代模拟的反馈 - 馈线控制模型。该项目中的重点材料是基于镍的合金inconel 718,它广泛用于高温核应用中,例如核反应堆核心和热交换器。拟议的研究旨在解决核能社区中L-PBF进程的资格和更广泛采用的关键障碍。核芯和热交换器等核应用通常包含不同尺寸的几何特征,这会导致熔体池和微观结构在整个零件过程中差异很大。拟议研究中的关键创新是开发了混合CFD-FEM模拟模型,该模型为此基于反馈 - 反馈控制方法。通过使用准确的扫描分辨过程模拟,通过调整过程参数(激光功率和扫描速度)来最佳控制熔体池尺寸,预计熔体池和微观结构将在整个复杂部分中更加一致。通过减少新的L-PBF产品开发中昂贵的实验数量,可以以较低的成本进行熔体池和微观结构一致性的巨大改进,以更有效地执行资格。大多数L-PBF热过程模拟模型使用CFD或FEM;但是,前者是准确的,但在计算上非常昂贵,而后者是有效的,但不足以捕获熔体池的尺寸和温度,而随着局部几何形状的变化。在拟议的CIFEM(CFD施加的FEM)过程仿真模型中,瞬态热场是根据高保真CFD模拟计算的,并通过深度学习来推断。这些温度值是根据局部热环境所包含熔体池的局部FEM区域施加的,而其他地方的热传导则由FEM求解。开发的基于CIFEM的工艺模拟预计将是基于CFD的模拟效率的30-50倍,同时保持熔体池和温度场的预测准确性。使用CIFEM模型最佳地控制局部过程参数,预计熔体池尺寸的变化将减少50-70%,从而导致更一致的微观结构。因此,该项目将解决社区中的基本优先事项之一,并有助于促进更广泛的L-PBF程序在安全至关重要的核应用中。首席调查员:Albert C. TO,Albertto@pitt.edu
自2005年发现石墨烯以来,相互作用的2D电子系统中特殊地面的形成引起了人们的关注[1]。除了磁有序外,还报告了有关最近实验中的电荷顺序和与Mott阶段配对的报道[2-4]。在WSE 2 /WS 2层[5,6]和α -rucl 3 [3,4]中的最新实验中,我们分析了在双层激子中存在莫特相的条件,并且在量子和热波动方面的稳定性及其稳定性。氯化氯化物α-相(α -rucl 3)是一种具有强旋轨耦合的分层化合物,以其有趣的电子特性而闻名,尤其是其在量子材料中的潜在使用和自旋液体相[7-12]。其电子结构受RU 4 d轨道和晶体场效应的影响。α相具有强旋轨耦合的特征,该耦合表现出多轨蜂窝状莫特绝缘阶段[3,7,13-19]。对于相关电子系统的研究,此阶段特别有趣。已经对α -rucl 3的蜂窝晶格的电子结构的作用进行了广泛研究,使用光发光表格[14],拉曼散射[20-22],光发射光谱[23],THZ光谱[24,25],x-雷雷镜[26] intrastry sptription [26] intrastry Sptiptrys [26] [27]。尽管Mott Gap的大小正在争论中,但在实验研究中已经证明了Mott绝缘子在α -RUCL 3中的存在[13,17,21,23]。Qiu等。 参考文献中报告。 1。Qiu等。参考文献中报告。1。调查Mott绝缘子的核心任务之一应解决带电颗粒分布的刚度。这在很大程度上取决于间隙的大小相对于跳跃速率以及材料的化学掺杂。通过化学掺杂Mott绝缘子来调整材料特性是非常具有挑战性的。具有示例性莫特绝缘子的有前途的候选者是α -rucl 3,顶层的石墨烯是α -rucl 3。而α -rucl 3带有孔,而额外的石墨烯片充当电子储层。[3]如何量身定制由石墨烯和α -rucl 3组成的范德华异构结构等电子结构。该材料的示意图如图然后,石墨烯层的电子和α -rucl 3层中的孔会受到有吸引力的层间相互作用,从而导致激子的形成[28]。在此设置中,激子的密度通过电子的密度控制,后者通过连接到石墨烯片的电栅极调节[3]。栅极电压诱导激子气体的有效化学电位µ。与化学掺杂相反,来自石墨烯的掺杂提供了连续的可调节性,并且不会引入不希望的晶格失真。分别对电子和孔的内部排斥可以产生电荷密度波或广义的Wigner晶体[29]。电荷顺序也可能是由电子 - 波相互作用引起的[30]。基于自一致的Hartree-fock或连贯的电位近似[31]的最新计算表明,如果对材料的特定细节计算自我能量,则复杂的自我能量可以描述实验结果的合理近似来描述实验结果。不参考特定的显微镜机制,这是对双重
ahoffmann@ucla.edu叙述我是UCLA的微生物学和免疫学教授,信号系统实验室的PI,自2013年以来,自2013年以来,定量和计算生物科学研究所(QC Bio)(QC Bio)主任,该研究所的教育和培训跨越了50多个教育和培训,该计划是该教育和培训的培训,并培训了学生,并毕业于研究生,并毕业于研究生。我拥有物理学和动物学(剑桥大学)的本科学位,并归功于我的博士学位培训归功于Robert Roeder(Rockefeller University)在生物化学和分子生物学领域,以及我对免疫信号和系统免疫学的David Baltimore(MIT和Caltech)的博士后培训。我开发了计算生物学专业知识作为博士后,以及我在加州大学,UCSD和UCLA的许多计算学员和同事。我的实验室研究重点是控制先天和适应性免疫反应的分子和细胞机制。一个中心主题是这些网络的动力学决定了功能特异性。i首先阐明了“时间代码”的概念,该概念在信号传导字段中产生了广泛的影响。我的实验室揭示了如何通过大量反馈和其他调节基序“编码”免疫反应信号传导动力学。我们已经表明,在疾病环境中,动力学发生了变化,并且可能是针对药物的。我们已经阐明了如何通过基因调节网络解码信号动力学,以控制刺激特异性基因的表达,细胞命运决策,从而控制了免疫细胞种群动力学。目前,我指挥NIH-和NSF资助的基因组学(B.I.G.)我们的系统生物学研究正在产生多功能,上下文依赖性巨噬细胞和产生抗体库的B细胞的预测细胞模型。我旨在推进跨学科研究和教育,以利用技术,计算和定量科学的机会。到目前为止,我已经在几个层面的生物科学中追求了这一目标:(i)通过在实验室中开发系统生物学方法,重点关注控制免疫的信号和基因调节网络,(II)通过通过UCSD的生物学家研究所(2009年)和Sanivo Biositios for Systems Biolosios for Systems Biolosios for Systems Biolosios for Systems Biolosios for Systems Biolosios for Systems Biolosios for Systems Biogios和2010年,以及2010年,以及(2010年),以及促进系统生物学,以及(QCB)在UCLA(2014)涉及广泛的教师招聘,空间翻新,中心和计划赠款以及教育计划,例如在UCLA(III)的多轨计算生物学专业和次要的教育计划,通过建立和/或改造UCSD的研究生培训,例如UCSD的生物信息和系统生物学(2009年),诸如UCSD加州大学洛杉矶分校的生物信息学研究生计划(2014年)和生物医学大数据培训计划(2015年)。我致力于促进作为导师的多样性,公平和包容性的范围,并为外展活动促进,以及在各种行政能力中,例如部门多样性委员会主席(2009- 2012年),学术参议院多样性与公平委员会(2005-2011)以及校长的多元化委员会(2011年 - 2011年学生)(2011年至2011年至2011年),该委员会(2005- 2011年)对危机的反应。关于反种族主义工作队(2021)我共同撰写了用于机构变革的蓝图,为VC研究提供了建议,并制定了教师评估标准。夏季本科研究计划,将申请人池多样化为生物信息学,基因组学,系统生物学的研究生计划。