1不来梅大学,环境物理研究所(IUP),德国,德国2号航空中心(DLR),大气层研究所,德国Oberpfaffenhofen,德国3,工程学,数学和物理科学学院巴黎,索邦大学,CNRS,巴黎,法国5 MET办公室Hadley Center,UK 6国家大气科学中心,英国利兹大学7个国家大气科学中心7 Biogeochemical Signals Separtment
I. 序言 新的太空技术和轨道商业机会催生了全球航天产业的指数级增长和快速变化。火箭发射、卫星再入和上级火箭将气体和气溶胶排放到从地球表面到低地球轨道的每一层大气层中。这些排放可能会影响气候、臭氧水平、中层云量、地面天文学以及热层/电离层成分。航天产业的增长速度令人印象深刻:发射和再入质量通量最近每三年翻一番(Lawrence 等人,2022 年)。根据行业预测,到 2040 年,太空活动将继续增加至少一个数量级(Ambrosio 和 Linares,2024 年)。大型低地球轨道 (LEO) 卫星星座正在改变航天产业,因此到 2040 年,计划中的系统每年将需要发射和处置超过 10,000 颗卫星到大气层中。到 2040 年,以液化天然气 (LNG) 燃料发动机为动力的重型运载火箭预计将成为发射活动的主导 (Dominguez 等人,2024)。航天工业向大气排放的范围和性质正在急剧增长和变化 (Shutler 等人,2022)。发射和再入气溶胶排放量估计表明,到 2040 年,许多计划中的大型低地球轨道星座将需要将发射吨位从目前的 3,500 tyr -1 增加到 30,000 tyr -1 以上 (Shutler 等人,2022)。火箭燃烧排放量将与有效载荷同步增加。蒸发空间碎片和废火箭级的再入排放量将从目前的每年 1,000 吨增加到每年 30,000 吨以上 (Shulz 和 Glassmeier 2021)。到 2040 年,全球发射和再入大气层颗粒物(黑碳和金属氧化物)排放到平流层的总通量将与自然陨石背景通量相当。这些估计不包括不确定但可能很重要的发射要求,例如 MEO(中地球轨道)和 GEO(地球静止赤道轨道)等轨道上的新太空系统或积极的月球或火星探索计划。发射和再入大气层排放量的上升是在人们对航天排放的成分和化学成分存在广泛知识缺口的情况下发生的。人们对大型液化天然气火箭的排放和影响知之甚少。最近发现,重返大气层的太空碎片中的金属已经存在于构成天然平流层硫酸盐层的 10% 颗粒中,这强调了迫切需要了解未来重返大气层数量级的增加将如何影响大气(Murphy 等人,2023 年)。显然,总体上缺乏评估未来航天排放影响所需的科学和工程模型、工具和数据。知识差距:为了应对这些日益增长的担忧,2021 年,Surendra P. 博士美国宇航局艾姆斯研究中心的 Sharma 组织并领导了一个多机构工作组(航空航天公司的 Martin Ross 博士、NOAA/CSL(美国国家海洋和大气管理局/化学科学实验室)的 Karen Rosenlof 博士、科罗拉多大学 NOAA CSL 化学与气候过程组的 Chris Maloney 教授、哥伦比亚大学的 Kostas Tsigaridis 以及 GISS/NASA(戈达德空间研究中心/美国国家航空航天局)的 Gavin Schmidt 博士),在美国宇航局内部资金(地球科学部)的支持下,分析了预测发射和再入排放全球影响的模型的有效性和可信度,以及可用于验证这些模型的数据。该小组确定了对该现象的基本科学理解方面的关键差距,包括建模技术和
3. 假设一个实心铁球以 13 公里/秒的速度进入地球大气层,与水平面成 15 度角。球体直径为 1 米。高超音速时球体的阻力系数约为 1。铁的密度为 6963 千克/立方米。计算 a) 发生最大减速的高度、b) 最大减速的值和 c) 球体撞击地球表面的速度。d) 分析与气动加热相关的结果。
:航天部门监管的与通信相关的航天活动。 空间数据:由航天活动产生的数据,无论是遥感数据、卫星导航数据还是其他数据。 事件:由航天活动、航天支援飞行或高空活动引起的事件,影响或几乎影响此类活动的安全,或影响航天支援飞行或高空活动中使用的空间物体或飞行器的工作,或对大气层或地球表面的人员或任何物体或财产造成损害或几乎造成损害,并且该事件造成的损害未达到事故的程度。事故:由航天活动、航天支援飞行或高空活动引起的事故,导致人员死亡或严重伤害,或导致航天物体或用于航天支援飞行或高空活动的飞行器或机上财产毁坏或严重损坏,或导致大气层或地球表面的任何物体或财产毁坏或严重损坏。陨石:非人造的自然物质或金属石头,经非人为干预从外层空间到达地球。空间碎片:无任何作用或用途的空间物体或其碎片,包括其零部件和由此产生的材料、废料或碎片,无论是在外层空间(包括地球轨道)还是在地球大气层内。空间资源:外层空间存在的任何非生物资源,包括矿物和水。
在过去三年中,美利坚合众国(美国)做出了积极的承诺和投资,以减少有助于气候变化的温室气体(GHG)排放。美国试图减少正在产生的温室气体排放量并降低气候变化速度的一种方法是减少运输部门内化石燃料的使用。根据美国环境保护局(EPA)的说法,运输部门负责全球温室气体排放量的15%,而全球95%的运输能源来自基于石油的燃料。 1在美国,根据MIT Energy倡议发表的一篇文章,“乘用车约有16%的人为温室气体排放量,并消耗了美国使用的石油总数的40%。” 2因此,由于美国使用的乘用车消耗了大量美国使用的燃料总数,并负责相对较大的温室气体排放量进入大气层,因此美国决策者采取了具体的步骤来投资并要求炮台电动汽车(BEV)用车辆的运输量降低或消除炮台的运输量。根据美国环境保护局(EPA)的说法,运输部门负责全球温室气体排放量的15%,而全球95%的运输能源来自基于石油的燃料。1在美国,根据MIT Energy倡议发表的一篇文章,“乘用车约有16%的人为温室气体排放量,并消耗了美国使用的石油总数的40%。” 2因此,由于美国使用的乘用车消耗了大量美国使用的燃料总数,并负责相对较大的温室气体排放量进入大气层,因此美国决策者采取了具体的步骤来投资并要求炮台电动汽车(BEV)用车辆的运输量降低或消除炮台的运输量。1在美国,根据MIT Energy倡议发表的一篇文章,“乘用车约有16%的人为温室气体排放量,并消耗了美国使用的石油总数的40%。” 2因此,由于美国使用的乘用车消耗了大量美国使用的燃料总数,并负责相对较大的温室气体排放量进入大气层,因此美国决策者采取了具体的步骤来投资并要求炮台电动汽车(BEV)用车辆的运输量降低或消除炮台的运输量。
“今天的天气将是晴朗的天空,温度为 90 度,紫外线指数很高;”电视播音员告诉观众。他继续说,“警告:没有防护服和护目镜,请勿外出,否则可能会严重烧伤和患癌症。”地点是北卡罗来纳州,时间是 2005 年 12 月。曾经保护我们免受太阳有害紫外线伤害的臭氧层几乎已经消失。这不是科幻电影中的场景。除非尽快消除氯氟烃,否则它可能会成为现实。地球被包含多层的大气层包围。曾经的这种层被称为平流层。1 地球上的大部分臭氧都存在于平流层中。2 平流层臭氧 3 保护地球免受有害紫外线的伤害。4 氯氟烃 5 (CFC),由于其性质,6 会破坏这层保护层。7 臭氧耗竭可能是当今最具潜在危害的环境威胁。这个问题并不是新问题,但直到 20 世纪 70 年代末和今天才引起人们的高度关注。它非常严重,会影响植物、动物、食物链、人类健康甚至气候。地球的环境处于微妙的平衡之中。似乎只对环境的一部分产生直接影响的危害可能会间接影响许多其他部分。例如,臭氧层被氟利昂消耗殆尽,这反过来又导致有害的紫外线穿透大气层。浮游生物受到有害紫外线的不利影响,9 因此它们
“今天的天气将是晴朗的天空,温度为 90 度,紫外线指数很高;”电视播音员告诉观众。他继续说,“警告:没有防护服和护目镜,请勿外出,否则可能会严重烧伤和患癌症。”地点是北卡罗来纳州,时间是 2005 年 12 月。曾经保护我们免受太阳有害紫外线伤害的臭氧层几乎已经消失。这不是科幻电影中的场景。除非尽快消除氯氟烃,否则它可能会成为现实。地球被包含多层的大气层包围。曾经的这种层被称为平流层。1 地球上的大部分臭氧都存在于平流层中。2 平流层臭氧 3 保护地球免受有害紫外线的伤害。4 氯氟烃 5 (CFC),由于其性质,6 会破坏这层保护层。7 臭氧耗竭可能是当今最具潜在危害的环境威胁。这个问题并不是新问题,但直到 20 世纪 70 年代末和今天才引起人们的高度关注。它非常严重,会影响植物、动物、食物链、人类健康甚至气候。地球的环境处于微妙的平衡之中。似乎只对环境的一部分产生直接影响的危害可能会间接影响许多其他部分。例如,臭氧层被氟利昂消耗殆尽,这反过来又导致有害的紫外线穿透大气层。浮游生物受到有害紫外线的不利影响,9 因此它们
“今天的天气将是晴朗的天空,温度为 90 度,紫外线指数很高;”电视播音员告诉观众。他继续说,“警告:没有防护服和护目镜,请勿外出,否则可能会严重烧伤和患癌症。”地点是北卡罗来纳州,时间是 2005 年 12 月。曾经保护我们免受太阳有害紫外线伤害的臭氧层几乎已经消失。这不是科幻电影中的场景。除非尽快消除氯氟烃,否则它可能会成为现实。地球被包含多层的大气层包围。曾经的这种层被称为平流层。1 地球上的大部分臭氧都存在于平流层中。2 平流层臭氧 3 保护地球免受有害紫外线的伤害。4 氯氟烃 5 (CFC),由于其性质,6 会破坏这层保护层。7 臭氧耗竭可能是当今最具潜在危害的环境威胁。这个问题并不是新问题,但直到 20 世纪 70 年代末和今天才引起人们的高度关注。它非常严重,会影响植物、动物、食物链、人类健康甚至气候。地球的环境处于微妙的平衡之中。似乎只对环境的一部分产生直接影响的危害可能会间接影响许多其他部分。例如,臭氧层被氟利昂消耗殆尽,这反过来又导致有害的紫外线穿透大气层。浮游生物受到有害紫外线的不利影响,9 因此它们