摘要:光学遥感数据的大气校正需要确定气溶胶和气体的光学特性。提出了一种方法,该方法允许从无云情况下的投影像素中以低于 5 m 的空间采样间隔检测光学遥感数据的气溶胶散射效应。导出的气溶胶光学厚度分布用于改进大气补偿。第一步,一种新颖的光谱投影检测算法使用光谱指数确定阴影区域。对投影掩模的评估显示整体分类准确率在 80% 的水平上。使用这种导出的阴影图,将 ATCOR 大气补偿方法迭代应用于阴影区域,以找到最佳气溶胶量。通过分析完全阴影像素与直接照明区域的物理大气校正来找到气溶胶光学厚度。基于阴影的气溶胶光学厚度估计方法 (SHAOT) 在机载成像光谱数据以及摄影测量数据上进行了测试。对于所研究的测试案例,使用这种导出的气溶胶光学厚度进行大气校正的反射率值的精度可以从 3-4% 提高到优于 2% 的水平。
第二单元 电磁波 9 分类 - 电磁波的应用、传播特性、低频和高频波的传播 - 折射率 (RI) - 影响 RI 的因素 - 标准和环境条件下光和近红外波群的计算 - 环境条件下微波 RI 的计算 - 参考折射率 - 第一次速度校正的实时应用。大气参数的测量 - 平均折射率 - 第二次速度校正 - 总大气校正 - 温度 - 压力传感器的使用。
本文回顾了高光谱遥感 (HRS) 技术在各种地质应用中的潜力,从岩性测绘到地壳丰度较低的经济矿物勘探。这项工作更新了对该主题的理解,从矿物光谱开始,到其通过大气校正、降噪、纯光谱端元检索和解混等不同程序在勘探矿床和碳氢化合物储层中的应用。除了线性解混外,还讨论了非线性解混和归因于反射光非线性行为的参数。包括一些案例研究,以证明该技术在不同地质勘探中的有效性。最后,指出了该领域的最新发展,如无人机的超光谱成像及其后果。
(I/NAV)在E1-B信号组件上广播。 这是通过在E1 I/NAV消息的先前保留字段中传输特定于身份验证的数据来实现的。 通过使用这些先前保留的字段,OSNMA不会向系统引入任何覆盖层,因此OS导航性能仍然没有受到影响。 此外,那些已经跟踪OS信号的接收器只需要固件更新即可开始验证导航数据。 有关OSNMA服务的其他详细信息可以在Galileo Open Service导航消息身份验证(OSNMA)信息注释中找到。 •伽利略通过伽利略信号(E6-B)和陆地手段(Internet)免费提供了高精度精确点定位(PPP)校正。 校正由每个卫星的轨道,时钟,代码和相位偏置组成。 拥有全面服务也将包括大气校正。 有关具有服务描述的其他详细信息可以在伽利略高精度服务(HAS)信息注释中找到。 2.4。 Geomatics中的伽利略(I/NAV)在E1-B信号组件上广播。这是通过在E1 I/NAV消息的先前保留字段中传输特定于身份验证的数据来实现的。通过使用这些先前保留的字段,OSNMA不会向系统引入任何覆盖层,因此OS导航性能仍然没有受到影响。此外,那些已经跟踪OS信号的接收器只需要固件更新即可开始验证导航数据。有关OSNMA服务的其他详细信息可以在Galileo Open Service导航消息身份验证(OSNMA)信息注释中找到。•伽利略通过伽利略信号(E6-B)和陆地手段(Internet)免费提供了高精度精确点定位(PPP)校正。校正由每个卫星的轨道,时钟,代码和相位偏置组成。拥有全面服务也将包括大气校正。有关具有服务描述的其他详细信息可以在伽利略高精度服务(HAS)信息注释中找到。2.4。Geomatics中的伽利略
本课程旨在为具有有限的地球科学卫星遥感背景的学生提供详尽的介绍,以收集遥感物理原理的基本概念和基础。本课程的主要重点是卫星遥感技术的基本物理和数学原理,包括辐射和几何信息,卫星轨道和地理位置模拟,科学算法设计,大气校正,以及以遥感的遥控感测量。此外,该课程将重点关注NASA,NOAA和USGS当前和未来的卫星仪器。这些学生不仅会了解卫星遥感系统的作用,而且会了解他们的工作方式。本课程旨在通过遥感和应用的物理原理为学生提供全面的最新概述,这不仅用于监测全球和区域氛围,海洋和陆地表面,还用于检测当地目标,例如城市和郊区。气候变化的基于卫星的应用也是另一个重点领域。
系统替代校准(SVC)是海洋色彩观察的基础。它通过最大程度地减少影响空间传感器绝对辐射校准和大气校正过程的偏见的影响来最大化卫星海洋颜色数据产品的准确性。实际上,即使有完美的大气校正,仍然需要SVC来解决卫星传感器校准中的限制。各种SVC程序已被实施,针对不同的卫星海洋色彩应用,例如区域调查,个人目标以及最苛刻的气候和运营应用,需要低不确定性和整个全球多个Messive时间序列。这张白皮书重点介绍了具有全球运营和气候目标的海洋色彩任务的SVC,这是由在圣彼得堡南佛罗里达大学海洋科学学院举行的专门研讨会的结果,是国际海洋色协调组(IOCCG)的海洋色SVC工作队的倡议。白皮书肯定了对SVC长期和持续基础设施和相关活动的必要需求。它概述了全面的海洋色SVC框架的主要要求,重点是支持气候和全球运营应用,以确保全球和多年海洋颜色数据产品的最高准确性和一致性。提供了关键建议,以解决有关与SVC原则,要求和方法相关的未来问题的调查。Contributors B. Carol Johnson 1 , Giuseppe Zibordi 2 , Ewa Kwiatkowska 3 , Kenneth Voss 4 , Frédéric Mélin 5 , David Antoine 6 , Menghua Wang 7 , Shuguo Chen 8 , Constant Mazeran 9 , Brian B. Barnes 10 , Jee-Eun Min 11 and Hiroshi Murakami 12 1 National Institute of Standards and Technology,美国马里兰州盖瑟斯堡2国家航空和太空管理局,戈达德太空飞行中心,美国马里兰州格林贝尔特,3欧洲3欧洲气象卫星剥削组织中国,Qingdao,中国9号索尔沃,法国10索尔沃,南佛罗里达大学圣彼得堡大学,佛罗里达州圣彼得堡,美国,美国11 UST21,韩国仁川12日本航空航天勘探机构,地球观察研究中心,日本
摘要 — 高级高光谱数据分析软件 (AVHYAS) 插件是一个基于 Python-3 的量子 GIS (QGIS) 插件,旨在处理和分析高光谱 (Hx) 图像。从 1.0 版开始,AVHYAS 是一个免费的开源平台,用于在研究学者、科学家和潜在最终用户之间共享和分发 Hx 数据分析方法。它旨在保证现在和将来 Hx 机载或星载传感器的充分利用,并提供用于 Hx 数据处理的高级算法。该软件可免费使用,并提供一系列基本和高级工具,例如大气校正(用于机载 AVIRIS-NG 图像)、标准处理工具以及用于 Hx 数据分析的强大的机器学习和深度学习接口。本文概述了 AVHYAS 插件,解释了典型的工作流程和用例,以使其成为高光谱遥感应用的常用平台。索引词 —AVHYAS、QGIS、Python 3.0、高光谱数据分析、分类、深度学习、分离、融合、回归、目标检测
WorldView-3 于 2014 年发射,是一个由 DigitalGlobe(现为 Maxar Technologies)开发、Ball Aerospace & Technologies 建造的卫星星座。WorldView-3 遥感平台部分设计用于地质勘探。其单一全色 (pan) 光谱带用于快速收集高分辨率图像,这对于捕捉清晰的图像细节(30 厘米/12 英寸像素分辨率)特别有用。可见光和近红外 (VNIR) 系统收集八个高分辨率(1.2 米/4 英尺,1 英寸像素分辨率)多光谱带,主要用于铁矿物、稀土元素、植被健康以及沿海和土地利用应用。全色和 VNIR 系统由八个短波红外 (SWIR) 波段(3.7 米/12 英尺,2 英寸像素分辨率)补充,用于测量和绘制粘土矿物,以及一个称为 CAVIS(云、气溶胶、蒸汽、冰和雪)的大气传感器,该传感器带有另外 12 个光谱波段。CAVIS 波段可对图像进行非常精确的大气校正,以消除云、气溶胶、蒸汽、冰和雪的影响。
摘要。我们评估了在蒙古某铜矿床环境中,一种新型系统像素清晰校准场在航空高光谱矿物测绘中应用的机会和性能。校准场旨在用于估计特定地质场景中单个像素中关键矿物的灵敏度和量化。校准场的布局由两种不同的含铜岩石样品、一种来自矿山的低铜含量岩石材料、来自矿山的尾矿材料和具有明确已知光谱特征的校准材料组成。样品材料的缩放覆盖范围旨在开发统计方法,以基于像素的方法量化航空调查中的目标矿物。数据收集包括使用地球化学、X 射线衍射以及微观和电子光栅微观方法描述校准材料。使用可见光和近红外机载传感器以及短波红外机载传感器,从六个高度多次重复收集校准场的数据。经过像元校正和大气校正后,对1400、1900、2200nm处黏土矿物的吸收特征进行了精确测量和统计分析,给出了覆盖率与吸收特征特别是在2200nm附近的相关性,以及飞行高度对探测灵敏度的影响和