经常但并非总是如此,趋势和对流项比右侧的两个术语小得多,并且在ABL中,动量通量收敛,Coriolis力量和压力梯度力之间的三向力平衡近似,使得平均风在压力梯度下具有均匀风。跨壳流动角A是实际的表面风与地球风向之间的角度。如果可以准确地测量实际和地质速度的平均曲线,则可以将动量通量收敛计算为上述方程中的残差,并垂直整合以推断动量通量。该技术通常在本世纪初应用,在快速响应之前,完善了湍流速度成分的高数据速率测量值。这不是很准确,因为U或U G中的小测量误差会导致动量通量中的相对误差。
实现了对大气参数的依赖性。提出了新颖的简化指标来评估CBC的性能。几个光束pro纤维(超高斯,截短的高斯等)和gemetries在远端的最大强度方面进行了分析。提出了取决于油炸半径的PCBC效率的近似公式。将CBC建模的结果与湍流气氛中高斯束传播模型的结果进行了比较。分析了CBC性能对C N 2参数,范围和高程角的依赖性。可以得出结论,如果没有有效的自适应光学系统,CBC在中和远程传播中的应用是不切实际的。©2020中国军械学会。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
湍流对远程成像系统的影响表现为图像模糊效应,通常由系统中存在的相畸变量化。可以想象,根据传播体积内的大气湍流强度,可以理解模糊效果。获得湍流强度曲线的一种方法是使用动态范围的雷利信标系统,该系统利用沿策略性的信标沿着传播路径的范围进行了差异,从而有效地推导了影响光学成像系统的模糊畸变的特定路径段贡献的估计。已经设计了一种利用此技术的系统,并且已经构建了用于测试的原型。该系统被称为TARDIS,该系统代表湍流和气溶胶研究动态询问系统。TARDIS是一种光学传感系统,基于在相对不变的湍流诱导的波前扰动的静态时期内动态更改收集传感器和瑞利信标之间的范围。一种概念收集的场景由信标组成,在该信标中,基于激光脉冲和摄像头快门速度,空气分子和气溶胶颗粒反向散射图像在不同距离捕获的距离。获得基于TARDIS的湍流强度曲线的基于测量的估计是基于整理分段的折射率结构参数,𝐶𝐶2,值为大气的特定层。这些𝐶𝐶𝐶𝐶𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠2值是从炸参数段(0𝑖𝑖)中发展出来的,这些值是从Shack-Hartmann波前传感器上的相邻测量值中推导的。从传感系统收集光圈上存在的相位方差的平均值估计炸参数的单个值。跨孔的估计相方差的平均值是由从Shack-Hartmann波前传感器测得的梯度重建的区域倾斜砖中构建的。本文提供了理解大气湍流的基础理论,提供了当前可用的湍流估计技术的参考,并提供了针对TARDIS的细节,层析成像湍流估计方法以及收集概念数据的初始证明的分析。这项研究提供了一种新颖的手段,用于量化大气湍流的强度特征。利用概述的方法,使用了扰动波前的直接测量,这与估计湍流强度曲线的其他方式有不同。由于这种差异,可以使用动态范围的信标来产生湍流概况估计值,以增加对其他方法的置信度,或用作不容易受到相同误差源影响的独立测量技术。此外,由于该技术利用了波前的直接测量,因此可以想象,这可以与用于图像校正的自适应光学系统相关。
“在我们的受控实验室实验中,我们模拟了一个湍流的自由空间量子通道,以评估我们的自适应光学系统的有效性。结果令人震惊,”博士学位Lukas Scarfe说。“没有自适应光学,湍流引入了超过安全阈值的错误,使量子密钥分布变得不可能。但是,通过启用了自适应光学功能,我们成功恢复了通道,执行高维QKD并每个光子最多三个位编码,这显着提高了关键的生成率。”
使用多风扇风力发电机对大气湍流进行精细尺度多点测量和特性分析,以便在实验室中重现 Marilou Jourdain De Thieulloy 博士,瑞士日内瓦应用科学与艺术大学 (HESSO – HEPIA)
目前的研究结果表明,飞行过程中大气湍流造成的干扰效应可以显著减少。一种新方法(也已申请专利)可将升力补偿效应提高 10 倍。先前的模拟和无人驾驶试飞结果表明,与无控制飞行相比,干扰效应可能减少 80%。
卫星量子通信的进步旨在通过提高传输信息的安全性来重塑全球电信网络。在这里,我们研究了大气湍流对地面站和卫星之间光学区域中连续变量纠缠分布和量子隐形传态的影响。更具体地说,我们研究了在下行链路和上行链路场景中,由于分布中的各种误差源(即衍射、大气衰减、湍流和探测器效率低下)导致的纠缠退化。由于使用这些分布式纠缠资源的量子隐形传态协议的保真度不够,我们包括一个中间站,用于状态生成或光束重新聚焦,以分别减少大气湍流和衍射的影响。结果表明,在低地球轨道区域的下行链路中,自由空间纠缠分布和量子隐形传态是可行的,但在中间站的帮助下,在上行链路中也是可行的。最后,完成恶劣天气条件下微波光学比较研究,以及地地和卫星间量子通信水平路径研究。
用于定向能和自由空间光通信应用的激光束在通过大气传播时可能会因光学湍流而严重扭曲。这些扭曲主要源于大气边界层,该边界层通常延伸至约 2 公里高,包含大气质量的 75%。其影响包括光束偏移、光束增宽和辐照度波动。自适应光学技术的使用可以减轻湍流的影响,此类系统在天文应用中广为人知,但在定向能应用中的实现和性能仍然不太为人所知。任何自适应光学系统的目标都是通过使用波前传感器测量误差、计算适当的校正并将此校正应用于可变形镜来消除光路变化导致的光波前扭曲。为了满足时间带宽要求,该反馈回路每秒执行数百次。要确定自适应光学系统的特性,必须模拟大气湍流对波前的影响。激光系统性能的评估取决于传播预测代码中使用的大气模型的精度。经过几十年的研究,一些分析理论例如几何光学 1 、Rytov方法和马尔可夫近似 2-4 已经发展起来,用于计算激光束传播的特性。但这些方法在某些条件下是近似的,因此它们的适用性有限,并且闪烁统计数据的理论计算非常困难,特别是当强度波动变大时。因此,开发了数值方法来更真实地表示大气湍流对激光束传播的影响。这些方法被称为光束传播方法 5 。这些方法的其他名称是分步傅里叶技术 6 和随机相位屏方法 7,8 。这里我们介绍激光束传播代码 LAtmoSim,它使我们能够评估大气对激光束波前的影响,并通过使用上述方法确定 AO 系统的设计参数。在本文中,我们还介绍了预测大气湍流强度的工作成果。光学湍流强度的定量测量称为折射率结构参数 C n
多年来,大气湍流一直是物理学和工程学领域的研究热点。当激光束在大气中传播时,它会受到散射、吸收和湍流等不同光学现象的影响。大气湍流效应是由折射率的变化引起的。不同大小的涡流会影响光波在大气中的传播。折射率的这些变化会导致传播的激光束产生不同的变化,如光束漂移、光束扩散和图像抖动。所有这些影响都会严重降低光束质量 (M 平方) 并降低系统在某些应用中的性能效率,包括自由空间光通信、激光雷达-激光雷达应用和定向能武器系统 [1- 5]。传统上,湍流由 Kolmogorov 模型类型定义。Kolmogorov 谱的幂律值为 11/3,用于描述高斯分布 [6]。许多光谱具有特定的内尺度和外尺度,如 Tatarskii 光谱、von Karman 光谱、Kolmogorov 光谱和广义修正光谱 [7]。本研究采用广义修正大气光谱模型。我们通过数值和分析方法执行高斯激光光束在不同传播距离下的传播行为。此外,我们还研究了一些参数对光束传播的影响。讨论了所有模拟结果,并将其与文献中的结果进行了比较。
本文介绍了如何将雷达、卫星和闪电数据与数值天气模型数据结合使用,以远程检测和诊断雷暴中及周围的大气湍流。使用 NEXRAD 湍流检测算法 (NTDA) 测量云内湍流,该算法使用经过严格质量控制的地面多普勒雷达数据。NTDA 的实时演示包括生成覆盖落基山脉以东美国大陆的 3-D 湍流马赛克、基于网络的显示以及将湍流图实验性地上传到途中的商用飞机。近云湍流是根据雷暴形态、强度、增长率和环境数据推断出来的,这些数据由 (1) 卫星辐射测量、变化率、风和其他派生特征、(2) 雷击测量、(3) 雷达反射率测量和 (4) 天气模型数据提供。这些数据通过机器学习技术相结合,该技术使用商用飞机的现场湍流测量数据库进行训练,以创建预测模型。这项新功能由 FAA 和 NASA 资助开发,旨在增强当前美国和国际湍流决策支持系统,以便为飞行员、调度员和空中交通管制员提供快速更新、高分辨率、全面的大气湍流危害评估。它还将为 NextGen 的综合 4-D 天气信息数据库做出贡献。