2.1 典型的太阳光谱分布显示 PV 感兴趣的区域 。.....................3 2.2 各种 PV 材料的相对光谱响应函数。.....................4 2.3 用于光伏材料评估的不同实验室灯的光谱分布。...........5 2.4 太阳光谱分布随大气质量增加的变化 M ......................6 2.5 太阳几何定义,包括法线角、天顶角、入射角和方位角 ............7 3.1 光学滤波器参数 ....................。。。。。。。。。。。。。。。。。。。。。。。。........11 3.2 使用公式 (4) 时指示辐照度与真实辐照度变化示意图 .......14 3.3 用二极管阵列和扫描光栅测量Spire 2 40A的相对光谱分布
我讨论了当前的低地球轨道人造卫星数量,并表明拟议的约 12,000 颗 Starlink 互联网卫星的“巨型星座”将占据 600 公里以下的地球轨道下部,其纬度相关面数密度在大气质量 < 2 时为每平方度 0.005 到 0.01 个物体。如此大的低空卫星在地面观察者看来非常明亮,而最初的 Starlink 卫星是肉眼可见的物体。我根据纬度、一年中的时间和夜晚的时间模拟了预期的照明卫星数量,并总结了地面天文学可能产生的一系列影响。在冬季,在主要天文台典型的低纬度地区,卫星在半夜的六个小时内不会被照亮。然而,在中纬度(45-55 度,例如欧洲大部分地区)黄昏附近的低海拔地区,黑暗地点的肉眼观察者可能同时看到数百颗卫星。
薄膜光伏(PV)电池是半导体技术中最重要的研究课题之一,能够有效地将太阳能转化为电能。1 – 6 单片三结电池(GaInP/GaInAs/Ge)因其高达 30% 大气质量零点(AM0)的效率而成为飞机和航天卫星等许多领域的首选7,8。9 – 15 然而,在制造和使用过程中引入的多层 PV 电池的机械应力和断裂对光电转换性能和寿命起着至关重要的作用。因此,定量表征和评估太阳能电池中的残余应力对优化结构设计、提高其可靠性具有重要意义。在光伏电池宏观断裂之前,大量的微裂纹开始形成、积累并对光伏电池产生弯曲效应,导致高振幅残余应力,从而导致光伏电池性能显著下降。更好地了解光伏电池的残余应力对于分析损伤机制以及随后通过改进结构设计来提高光伏电池的性能具有重要意义。16 – 18
该技术的原理已在之前的报告中描述过,这里不再详细讨论。更多详细信息可参见 Bell et al, 1994, Adrian et aI, 1994 和 Notholt et aI, 1994 及其参考文献。总之,NPL 开发了一种高分辨率光谱仪,在 2.5-13.5 pm(750-4000 cm-1)的中红外光谱区域内,最大光程差为 2.57 m(L\v Iv <3.2 x 1Q-6)。图 3 显示了该仪器的示意图。在本程序过程中,通过使用一系列窄带光学滤波器,该仪器的检测灵敏度得到了提高。此外,该仪器已进行了修改,可以同时在长波长和短波长通道中进行测量。这些改进使 NPL 能够从单个高分辨率光谱测量 CION02 的垂直柱,CION02 是一个非常重要的临时平流层水库,与氯催化臭氧消耗有关,该光谱可在 73 秒内获得。图 4 显示了在 SESAME 活动第一阶段使用 FTIR 仪器获得的光谱示例。从图 4 可以看出,CION02 v 4 Q 分支吸收与 CO2 和 03 吸收线强烈混合。CIONO2 垂直柱的检索需要对应用于具有重叠吸收的其他分子的拟合程序进行重大改进。这需要一个两阶段程序。在第一阶段,H2O、CO2 和 03 特征拟合在宽光谱窗口 (779.0-780.7 cm-1) 上。在第二阶段,CION02 特征拟合在从 779.9-780.3 cm-1 延伸的较窄窗口上。估计的检测限以斜柱表示 (斜柱 = 垂直柱 x 大气质量因子),估计为 2 x 1015 mol cm-2。应该注意的是
2.1 典型的太阳光谱分布显示 PV 感兴趣的区域 。.....................3 2.2 各种 PV 材料的相对光谱响应函数。.....................4 2.3 用于光伏材料评估的不同实验室灯的光谱分布。...........5 2.4 太阳光谱分布随大气质量增加的变化 M ......................6 2.5 太阳几何定义,包括法线角、天顶角、入射角和方位角 ............7 3.1 光学滤波器参数 ....................。。。。。。。。。。。。。。。。。。。。。。。。.......11 3.2 使用公式 (4) 时指示辐照度与真实辐照度变化示意图 ..........14 3.3 使用二极管阵列和扫描光栅光谱仪测量的 Spire 2 40A 的相对光谱分布与校准灯光谱的比较 ....................15 3.4 阵列光谱辐射计数据收集时序图 .........................16 3.5 带有 3 个误差线的光谱辐照度灯数据标准 ........................19 3.6 NREL 光谱辐射校准照片 ...............................2 2 3.7 NREL 光谱辐射计相隔六个月的校准文件比率 ..........2 3 3.8 汞氩灯的发射光谱显示用于波长校准的线条 .2 4 3.9 由于校准期间过量的(反射的)辐射到达输入光学器件导致白炽灯的光谱分布失真 ......................... ; .......2 5 4.1 氙源的光谱分布、ASTM E-892 全局光谱以及 CIS 和非晶硅电池的光谱响应,用于光谱失配计算 .............2 6 4.2 白炽灯源的CIS和非晶硅光谱响应和光谱辐照度曲线 ............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..29 4.3 NREL 参考电池校准测量系统框图 ...............3 2 4.4 NREL 样品光谱响应报告 ..。。。。。。。。。。。。。。。。。。。。。。。。.................3 3 4.5 用于 Sandia/NIST 校准程序的设备示意图 ...................3 4 5.1 典型的绝对腔辐射计设计 .........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4 1 5.2 使用绝对腔辐射计参考的典型日射计响应度与一天中的时间。注意响应度有 1.2% 的差异... ................................... 44 5.3 遮光-非遮光日射强度计校准信号时间序列 .......< div> 。。。。。。。。。...... div>......4 5 5.4 示意图日射强度计的分量总和校准。................. div>....4 6 5.5 ' 典型太阳辐射计响应度响应与天顶角 . < /div>................. div>.........4 7 5.6 与图相同型号太阳辐射计的响应度与天顶角的关系。5.5 ........... div>....4 8 5.7 三纬度倾斜 NREL 光伏系统太阳辐射计与四季晴空的纬度倾斜参考太阳辐射计。.........。。。。。。。。。。。。。。。。。。。。.49 5.8 与 5.7 类似,但适用于部分多云条件 .....................................50 5.9 与图 5.7 和 5.8 类似,但阴天条件除外。.........................5 1 5.10 由晴空分量总和(直射光计/漫反射)数据生成的 NREL 太阳辐射计方位角-仰角响应图 ..。。。。。。。。。。。。。。。。。。。。。。。。.......5 2 5.11 未补偿的 50 结 T 型热电偶的温度响应非线性。还显示了补偿网络的响应。.................5 3 5.12 Eppley Laboratories 温度补偿网络示意图 ...................5 4 5.13 典型的 Eppley PSP 和 Kipp 和 Zonen 温度响应数据 ................5 4 5.14 单个 Eppley PSP 日射强度计的重复温度响应结果 ............5 5 6.1 用于 NREL 标准化室外测量系统的日射强度计支架,用于 PV 模块性能测试。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..5 8 6.2 NREL 户外测试设施使用的光伏系统日射强度计安装方案示例 ..60 6.3 用于评估光伏模块能量生产能力的拟议方法流程图 ........6 1 6.4 辐射数据的月/小时平均数据报告样本 .........................6 3 6.5 NSRDB 每小时数据格式注释示例 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 4