本文研究了卫星的在轨寿命。研究涵盖了不同的轨道状态、通用任务分析工具 (GMAT) 模拟和数据,以确认低地球轨道因素对卫星衰减的影响。太阳活动是卫星寿命的一个关键决定因素,影响低地球轨道 (LEO) 卫星所受的大气阻力。研究证实了阻力因素(横截面积和轨道高度)与卫星寿命之间的相关性,强调需要优化这些因素以延长在轨运行以及随后快速脱轨。本研究旨在为更细致地了解大气阻力因素和卫星动力学做出贡献。简介卫星已成为现代世界的重要组成部分,提供从通信和导航到天气预报和地球观测等广泛的关键服务。然而,卫星并不是太空中的永久固定装置。特别是在低地球轨道,卫星可能因大气阻力、潮汐扰动和太阳效应而逐渐失去轨道高度,并最终重新进入大气层并烧毁。因此,卫星在轨寿命是其设计、运行和任务规划的关键因素。
2022年2月4日,由于预测的太空天气指数中的错误估计以及以下大气阻力的意外增加,SpaceX损失了其49个Starlink卫星中的40个。通过进一步调查该事件,发现地磁风暴只是次要风暴。尽管如此,两次连续的冠状质量弹出在2月3日至4日袭击了地球,与2月2日相比,热圈密度的平均增加约为20%,局部峰值高达60%。这一事件以及我们正在预期太阳能活动时正在接近第25太阳能周期的太阳能最大值,这表明需要准确的预测,建模和对太阳对热层密度的影响的理解(Dang等,2022)。实际上,大气阻力是低于1,000公里的空间对象的主要干扰力,也是最大的不确定性来源(Berger等,2020)。因此,其确切的估计对于
1. 简介 地球轨道上的太空活动会产生天然流星体和空间碎片。流星体是由彗星和小行星产生的。流星体绕太阳运行,迅速经过地球并离开地球附近,导致流星体与航天器相撞的流量(每年每单位面积撞击物体的数量)相当连续。流星体对航天器的危害很小,因为它们主要是小颗粒。空间碎片由人造物体组成,现在和未来几年都无法发挥有用的作用。这些空间碎片包括非运行卫星、火箭上面级、因意外或故意碰撞和爆炸而解体产生的碎片、火箭尾气中的铝颗粒等。空间碎片绕地球运行并保持在轨道上,直到大气阻力和其他扰动力最终导致其轨道衰减到大气层中。由于大气阻力随着高度的增加而减小,大约 600 公里以上轨道上的大型碎片可以在轨道上停留数十年、数千年甚至数百万年。 (1)近年来,随着航天事业的进步,空间垃圾问题日益凸显。
最近,人们重新燃起了对极低地球轨道 (VLEO) 的兴趣,以实现卫星的持续运行,并将其作为停泊轨道,然后再将卫星提升到其运行高度,例如 Starlink。随着低地球轨道 (LEO) 的拥挤程度不断增加及其相关的碰撞风险,VLEO 可以提供一个额外的轨道区域,卫星可以在该轨道区域内享受 LEO 区域的好处,从而减轻 LEO 区域的负担。利用 VLEO 进行卫星运行有多个优势。首先,是明显的环境优势——在如此低的高度,大气阻力的增加意味着更容易、更快地实现报废脱轨。例如,在 300 公里处,无论卫星的寿命如何,卫星的寿命都将不到一年
2017 年,空军理工学院教员 Robert Bettinger 博士中校正在制定一门涉及大气再入的课程。他的课程目标之一是教育学生绘制和监控重返地球大气层的航天器。“我试图通过为研究生布置一个与低地球轨道上不受控制的自然衰减物体的再入预测有关的期末项目来增强课程内容的真实性,”Bettinger 说。轨道衰减是指两个轨道体(例如卫星或空间站)相对于地球的距离逐渐减小。对于低地球轨道 (LEO) 中的物体(1,200 英里或更短),轨道衰减通常是由大气阻力引起的。碰巧的是
虽然在整个空间中都存在空间碎片,但地球周围有大量积聚,尤其是在大多数空间操作发生的低地球轨道(LEO)中。这也归因于过去十年中小型航天器的发射节奏增加以及近期星座的激增。改善了空间的访问,使狮子座易于使用,对于更多的国家,组织和机构推出小型航天器,这增加了相关的空间碎片风险和威胁。轨道碎屑的积累的估计值表明,直径为1 - 10厘米的大约1,100,000个物体,直径> 10 cm的36,500块超过36,500块,在地球静止,赤道和狮子座高度之间位于轨道上(1)。图13.1显示了地球周围轨道碎片的表示。此外,由于大气阻力仅在<250 km(2)时,空间碎片的轨道寿命可能非常长。
旨在研究太空天气对卫星系统的影响的研究揭示了太空天气的几个重要影响。其中一些效果包括:地磁诱导的电流:这些电流可能会破坏卫星系统在低地球轨道上的操作,因为它们靠近地球表面。由于表面充电和电弧引起的辐射效应:来自各种来源的辐射会损坏卫星系统,这就是为什么在卫星设计中需要具有辐射保护的组件。辐射对人类健康的影响。电离层对卫星通信和导航的影响:电离层中的湍流可能会导致电离层等离子体密度的不一致,这可能会折射传入的无线电信号并引起电离层干扰。热圈效应:磁性风暴期间高层大气的膨胀会产生大气阻力,这可能会导致海拔高度或卫星轨道的干扰[10]。
自进入太空时代以来的几个世纪里,对地球空间环境的理解呈指数级增长(Jacchia,1959)。所谓的空间天气描述了太阳-地球连接中的“天气”变化,已显示出对平民生活、商业和国家安全(包括通信、导航、电网和卫星操作)的广泛影响(Anthea et al.,2021;Emmert,2015;Malandraki & Crosby,2018;McNamara,1991;Montenbruck & Gill,2000;Skone & Yousuf,2007;Zhang et al.,2019)。由于地球上层大气的存在,大量在100至600公里高度运行的卫星和空间碎片通过大气阻力受到空间天气的显著影响(Chen et al., 2012 , 2014 ; Li & Lei, 2021a ; Qian & Solomon, 2012 )。因此,不断增加的空间物体数量迫切需要准确认识和预报高层大气的四维时空变化以及空间天气系统(Krauss et al., 2020 )。
JAXA 提出了低地球轨道 (LEO) 卫星的创新理念。超低空试验卫星 (SLATS),也称为 TSUBAME,是第一颗占据 300 公里以下超低轨道 (S-LEO) 或极低地球轨道 (VLEO) 的地球观测卫星。SLATS 的目的是 1) 测试卫星在超低空使用离子发动机对抗高大气阻力时保持高度的能力,2) 获取大气密度和原子氧 (AO) 数据,3) 测试光学地球观测。SLATS 于 2017 年 12 月 23 日成功发射。随后,SLATS 使用化学推进器、气动阻力和离子发动机推进,在 636 天内将高度控制在 271.7 公里。 SLATS 最终在 167.4 公里的轨道上维持了 7 天,并于 2019 年 10 月 1 日完成运行。所有 SLATS 和原子氧监测器 (AMO) 数据都是在这些操作期间获取的。AMO 是监测 AO 及其对航天器材料影响的任务传感器之一。来自 AMO 的数据有助于未来 S-LEO 卫星设计的材料选择。AMO 获得的数据很有价值,因为它们提供了有关 AO 通量及其对空间材料影响的大量知识。精确的大气密度模型和大气成分模型对于预测轨道上碎片的轨迹或再入是必不可少的。已经开发了 NRLMSISE-00、JB 2008 和 DTM2013 等大气模型,但很少有研究将这些模型与 LEO 中的实际大气环境进行比较。从 SLATS 获得的平均大气密度低于大气模型(NRLMSISE-00、JB 2008 和 DTM 2013)预测的值。了解模型的准确性将有助于未来 S-LEO 卫星的轨道控制以及 LEO 中碎片的轨道预测和控制。
新南威尔士大学堪培拉分校在 M2 编队飞行立方体卫星任务上开展了一项实验计划,旨在为可用的空间态势感知 (SSA) 传感器和建模算法提供真实数据。本文概述了在任务的早期、主要和扩展运行阶段计划的实验和部署计划,这些计划为 SSA 观测提供了机会。该任务包括 2x6U 立方体卫星。每颗卫星都使用 3 轴姿态控制系统,利用航天器之间的大气阻力差来控制沿轨道编队。差动气动编队控制使卫星能够保持在可接受的沿轨道偏移范围内,以执行主要任务实验。在整个任务过程中,有几个重要的机会来收集基准 SSA 数据。立方体卫星对最初被连接成 12U 卫星,按照新南威尔士大学堪培拉分校地面站的预定命令,它们将被弹簧沿轨道方向推开,形成 2x6U 卫星编队。航天器分离,随后展开太阳能电池板和天线,标志着在早期运行阶段,配置、雷达截面和轨道发生了重大变化。太阳能电池板的展开将航天器的最大正面面积从收起配置时的 0.043 平方米增加到完全展开时的 0.293 平方米。航天器的姿态将受到控制,以通过差动气动阻力的作用阻止航天器的沿轨分离。卫星具有 GPS 和姿态确定与控制功能,可提供精确的时间、位置、速度和姿态信息,这些信息通常可在卫星遥测中获得。