第7章森林和野生动物A.强调正确的答案。1。一大片土地上覆盖着树木和灌木丛,称为:(a)草原(b)森林(c)沙漠2。Kaziranga国家公园在:(a)中央邦(b)西孟加拉邦(c)阿萨姆邦3。 地球表面降雨量和降雪量被称为:(a)凝结(b)蒸发(c)降水4。 全年保持绿色的森林被称为:(a)棘手的森林(b)常绿森林(c)落叶林。 B. 填写空白。 1。 常绿森林有高树木。 2。 在拉贾斯坦邦(Rajasthan)以及中央邦(Madhya Pradesh)和北方邦(Uttar Pradesh)的一部分发现了棘手的森林。 3。 落叶林也称为季风森林。 4。 山区森林中的树木很高。 5。 森林保护环境。 C.匹配以下内容。 1。 Periyar(A)Madhya Pradesh 4 2。 玛纳斯(b)古吉拉特邦5 3。 吉姆·科贝特(C)喀拉拉邦1 4。 kanha(d)阿萨姆邦2 5。 gir(e)uttarakhand 3Kaziranga国家公园在:(a)中央邦(b)西孟加拉邦(c)阿萨姆邦3。地球表面降雨量和降雪量被称为:(a)凝结(b)蒸发(c)降水4。全年保持绿色的森林被称为:(a)棘手的森林(b)常绿森林(c)落叶林。B.填写空白。1。常绿森林有高树木。2。在拉贾斯坦邦(Rajasthan)以及中央邦(Madhya Pradesh)和北方邦(Uttar Pradesh)的一部分发现了棘手的森林。3。落叶林也称为季风森林。4。山区森林中的树木很高。5。森林保护环境。C.匹配以下内容。1。Periyar(A)Madhya Pradesh 4 2。玛纳斯(b)古吉拉特邦5 3。吉姆·科贝特(C)喀拉拉邦1 4。kanha(d)阿萨姆邦2 5。gir(e)uttarakhand 3
目前,Cas9 和 Cas12a 系统被广泛用于基因组编辑,但它们精确产生大片段染色体缺失的能力有限。I-E 型 CRISPR 介导广泛和单向的 DNA 降解,但迄今为止,控制 Cas3 介导的 DNA 缺失的大小已被证明是难以捉摸的。在这里,我们证明了 Cas9 的内切酶失活 (dCas9) 可以精确控制哺乳动物细胞中 Cas3 介导的大片段缺失。此外,我们分别报告了使用 CRISPR/Cas3 和 dCas9 控制的 CRISPR/Cas3 在小鼠中消除 Y 染色体和精确保留 Sry 基因。总之,dCas9 控制的 CRISPR/Cas3 介导的精确大片段缺失为通过染色体消除建立动物模型提供了一种方法。该方法也有望成为治疗涉及额外染色体的片段突变或人类非整倍体疾病的潜在治疗策略。
摘要:近年来,为微生物病原体检测而设计的环路介导的等温扩增(LAMP)技术已获得了生物医学领域的基本重要性,提供了快速而精确的反应。但是,它仍然存在一些缺点,这主要是由于需要达到63℃的恒温块,这是BSTI DNA聚合酶工作温度。在这里,我们报告了DNA聚合酶I大片段的鉴定和表征,该碎片来自deinococcus radiodurans(Dralf-Poli),该片段在室温下起作用,并且对各种环境应力条件有抵抗力。我们证明,Dralf-Poli在广泛的温度和pH值中显示出有效的催化活性,即使在各种应力条件下(包括干燥)存储后,仍保持其活性,并保留其等温扩增技术所需的链排化活性。所有这些特征使Dralf-Poli成为尖端室温灯的绝佳候选者,该灯有望在护理点快速而简单地检测病原体非常有用。
AAVpro 包装质粒 (AAV2,#6234;AAV5,#6664;AA6,#6665,Takara Bio) 和 AAVpro 293T 细胞系 (#632273,Takara Bio)。所有 AAV 载体质粒均通过将对应于目标基因座和敲入序列的 PCR 片段克隆到 EcoRV 和 BglII 限制位点之间的 pAAV-CMV 载体中,去除 CMV 启动子、b-珠蛋白内含子和 hGH polyA 来构建。按照制造商的说明,使用 Xfect 转染试剂 (#631318,Clontech) 将 AAV 质粒和包装质粒转染 293T 细胞。使用 AAVpro 纯化试剂盒 (所有血清型) (#6666,Takara Bio) 提取和浓缩 AAV。使用 AAVpro 滴定试剂盒(#6233,Takara Bio)和热循环仪 Dice 实时系统 III(TP950,Takara Bio)估算病毒基因组拷贝数。
摘要:基因组精简是微生物进化过程中的自然过程,已成为生成理想底盘细胞用于合成生物学研究和工业应用的常用方法。然而,由于基因操作非常耗时,系统性基因组减少仍然是蓝藻生成此类底盘细胞的瓶颈。Synechococcus elongatus PCC 7942 是一种单细胞蓝藻,是系统性基因组减少的候选者,因为其必需基因和非必需基因已通过实验确定。本文报告,23 个超过 10 kb 的非必需基因区域中至少有 20 个可以被删除,并且可以实现这些区域的逐步删除。生成了一个七重缺失突变体(基因组减少了 3.8%),并研究了基因组减少对生长和全基因组转录的影响。在祖先三重至六重突变体( b 、 c 、 d 、 e1 )中,与野生型相比,上调的基因数量越来越多(最多 998 个),而在七重突变体( f )中上调的基因数量略少(831 个)。在来自五重突变体 d 的另一个六重突变体( e2 )中,上调的基因数量要少得多(232 个)。在本研究的标准条件下,突变体 e2 的生长率高于野生型、e1 和 f 。我们的结果表明,大量减少蓝藻基因组以生成底盘细胞和进行实验进化研究是可行的。
。CC-BY-NC 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 11 月 2 日发布。;https://doi.org/10.1101/2021.11.01.466790 doi:bioRxiv 预印本
重新混合或改编本材料用于任何目的,无需注明原作者。预印本(未经同行评审认证)在公共领域。它不再受版权限制。任何人都可以合法共享、重复使用,版权所有者已将此版本发布于 2020 年 4 月 14 日。;https://doi.org/10.1101/2020.04.13.039297 doi:bioRxiv 预印本