摘要 2020 年 2 月,新西兰收集了大量近距离操作的地球静止卫星观测数据。这些测量是“幻影回声”实验的一部分,该实验是澳大利亚、加拿大、新西兰、英国和美国之间的合作活动。作为一个合适的案例研究,选择了任务扩展飞行器 1 (MEV-1) 和 Intelsat 901 之间的对接。在近距离操作的最后部分,两颗卫星位于太平洋上空,因此从新西兰可以看到。这些观测是在位于奥克兰北部旺阿帕劳阿半岛的国防技术局 (DTA) 空间领域意识 (SDA) 天文台进行的。所有图像均使用配备 FLI ML11002 CCD 相机的 11 英寸 (279 毫米) Celestron Edge HD 望远镜拍摄的。DTA 天文台最近已完全自动化,可以整夜连续收集数据。每个晴朗的夜晚,为了提高光度测定和天体测量的时间分辨率,我们经常会收集多达 1500 张图像,采样率约为每分钟 3 帧(每小时 180 帧)。基于 5 秒的曝光时间,卫星探测的视星等极限约为 15。实际上,只有当物体的星等约为 14 或更亮时,结果才是可以接受的。数据缩减是在 StarView 中执行的,这是 DTA 为 SDA 图像分析开发的专用软件工具。专门开发的数据分析算法用于恒星(恒星)图像和卫星(非恒星)图像的天体测量校准。基于视野中识别的大约 100-400 颗恒星,天体测量解决方案的典型 RMS 误差为 0.2 角秒。校准时使用了欧洲航天局的 GAIA 目录 (DR2),星等限制在 16 级以下。两颗卫星之间的相对天体测量随机测量误差通常小于 0.1 角秒,相当于太空中的 20 米以内。基于 GAIA G 波段的典型光度校准产生的 RMS 误差约为 0.1 – 0.2 个量级。同时,在良好的大气条件下,孔径光度测定的随机误差仅在 0.02 到 0.04 之间。利用 MEV-1 和 Intelsat 901 在近距操作期间获得的高质量测量结果,可以将观测到的天体测量和光度数据中的某些特征与任务期间执行的实际操作和其他关键事件关联起来。事实证明,现成的小孔径光学设备可成功用于监测地球静止轨道 (GEO) 上的近距操作并收集重要信息以供空间领域感知。
2008 年,杜迪克博士加入美国海军天文台,担任天文测量部仪器科学家。担任该职务期间,她主要负责各种备受瞩目的太空任务的系统工程和仪器仪表。杜迪克博士于 2015 年晋升为部门主管,并于 2015 年至 2018 年领导天文测量部国防和任务支持部门。在此期间,她管理了多个天文测量项目,包括三个 USNO 望远镜系统的部署和自动化以及 USNO 制作的所有国防部天体参考框架星表的开发。她是国防部空间实验审查委员会 (SERB) 两项星体跟踪器空间实验的主要研究员,这两项实验分别于 2019 年和 2020 年在空间站 (STP-H6) 和 STP-Sat4 上成功发射。
CHES 联合体 1 中国科学院紫金山天文台, 中国科学院行星科学重点实验室, 南京 210023; jijh@pmo.ac.cn 2 中国科学技术大学天文与空间科学学院,合肥 230026 3 中国科学院国家空间科学中心空间系统电子信息技术重点实验室,北京 100190 4 中国科学院大学,北京 100049 5 中国科学院光电技术研究所,成都 610209 6 中国科学院自适应光学重点实验室,成都 610209 7 中国科学院空间光电精密测量技术重点实验室,成都 610209 8 中国科学院微小卫星创新研究院,上海 201306 9 南京大学天文与空间科学学院,南京 210046 10 中国科学院上海天文台,上海 200030收到日期 2022 年 4 月 29 日;修订日期 2022 年 6 月 4 日;接受日期 2022 年 6 月 9 日;出版日期 2022 年 7 月 8 日
科学方法和开放式探究, 进行研究、实验室和实地活动时的安全和道德规范, 地质、海洋、气象和天文测量, 遥感和实地观察技术, 地图、图表和模型的绘制和使用, 传统和电子的研究、数据收集、分析、建模和报告手段 II. 表现 专业教育计划提供候选人参与连续和发展性实地体验和学生教学的证据,在训练有素、具有人际交往技能和教学能力的学院人员和合作教师的监督下。该计划还提供证据表明,地球和空间科学认证计划的退出标准和能力在课程、实地体验和学生教学中进行评估,并要求候选人通过以下方式展示他们在促进学生学习方面的知识和能力: II.A. 管理教学环境以便:
传单编号 24-003 申请方式:美国海军天文台 (USNO) 将在 2024 年 9 月 30 日之前接受简历,以填补国防部某些人员直接雇用权下的多个工程技术人员空缺。简历和成绩单应通过电子邮件发送至 NAVOBSY_NOBS_N1-DL@navy.mil,并在电子邮件的主题行中注明传单编号 23-003。非官方版本的成绩单是可以接受的,只要它们列出了所有课程、已完成的学分和学生的姓名。求职信不是必需的,但鼓励提交。将通过电子邮件联系高素质的申请人以安排面试。薪资范围:每年 82,764 美元至 107,590 美元工作地点:华盛顿特区工作地点:成功的候选人将受雇于驻扎在华盛顿特区的美国海军天文台 (USNO)。USNO。该职位是为了支持 USNO 的天体参考框架 (CRF) 部门和 USNO 的精确时间和天文测量 (PTA) 任务。
盖亚任务通过提供极其精确的全球参考天体测量技术,彻底改变了天体物理学。超越盖亚实现窄场微角秒 (uas) 天体测量技术,通过测量主星的反射运动,可以探测到类似地球的系外行星 (Unwin 等人,2008)。尽管径向速度 (RV) 和凌日等流行方法已经成功发现了数千颗系外行星,但只有天体测量探测方法才能让我们完全确定轨道并测量系外行星的质量 1 。系外行星的质量是确定该行星是否适合生命存在的关键参数,因为其大气和地球物理过程在很大程度上取决于质量。与 RV 方法相比,天体测量探测受恒星活动扰动的影响较小,对长周期系外行星具有更好的灵敏度,因此可以与 RV 和凌日方法相辅相成。针对这一独特的作用,NASA将“恒星反射运动灵敏度-天文测量”列为测量可居住系外行星目标质量的一级技术差距(NASA战略技术差距)。
由于受月球引力的影响,地月空间物体的轨道是非开普勒轨道,无法通过一组简单的特征进行一般参数化。从地球上看,物体也更暗淡,移动速度相对较慢;预计探测和跟踪都会更加困难。在本文中,我们从地球和月球上假设的地面传感器的角度,回顾了一组可能的轨道及其预期的天文测量和光度特征。虽然可能存在多种轨道,但我们重点关注在会合框架中闭合(即周期性)并从平动点(圆形限制性三体问题的静止平衡)发出的特殊类型的轨道。我们研究了 31 个独立的元素周期轨道系列(Doedel 等人,2007 年),每个都是光滑流形。对于每个系列,我们生成一系列具有代表性的会合位置和速度,并基于多面卫星模型模拟预期的观测特征(例如赤经、赤纬、视星等)。在这项研究中,我们希望更好地了解遥感技术如何为地月空间中的航天器发挥作用,以支持下一代传感器架构,包括太空实验,例如 AFRL 的地月公路巡逻系统 (CHPS) 概念。
国际合作: • 乌克兰卡拉津哈尔科夫国立大学天文研究所 • 捷克共和国捷克科学院天文研究所 • 非正式合作:美国喷气推进实验室阿雷西博天文台 • 欧洲空间局 => 联合国 IAWN 项目 • 中国国家天文台紫金山天文台 • 天文台合作(格鲁吉亚阿巴斯图马尼;保加利亚罗真;哈萨克斯坦天山;乌兹别克斯坦迈达纳克和基塔布) 观测: • 小行星勘测(暂时中止); • 近地小行星(NEA)的天文测量; • 小行星的光度观测以测量光变曲线; • 小行星和彗星的偏振观测; • 近地小行星的光谱观测。目标: - 使用小型广角望远镜开发小行星勘测技术; - 紧急跟进新的近地小行星 - 寻找双近地小行星、具有 YORP 效应和 BYORP 效应的小行星; - 研究 PHA、彗星和雷达目标的物理特性