WSF SV-1 继续按计划于 2023 年 9 月发射。该计划在 2020 年 12 月举行的任务保证技术交流会议上解决了剩余的七个未解决的 CDR 进入/退出标准。此外,SV-1 及其相关地面段的生产在单元和子系统的生产和测试方面继续取得进展。微波传感器数据处理软件 (MWSDPS) 的开发于 2021 年 6 月成功完成,该软件将 SV 中的数据转换为可供用户使用的有用数据。随后,MWSDPS 交付给用户进行早期集成和测试。此外,WSF 于 2020 年 12 月开始开发测试,并于 2021 年 8 月成功完成首次网络测试。微波成像仪于 2021 年 5 月开始集成和测试,主要子系统全年交付和集成。
运营计划将通过整合来自各种 FAA 和国家气象局 (NWS) 传感器和气象信息系统的数据来提供此类改进的气象信息。图 1 显示了 ITWS 的主要数据来源和该系统的一些主要用户。图 1 强调了 ITWS 的一项重要技术特征 - 整合来自各种来源的知识,以提供一套有关机场航站区运行重要天气的信息产品。从历史上看,降水的雷达反射率一直是航站区风暴信息的主要来源,机场地面风、温度和湿度信息则出现在单独的字母数字显示屏上。然而,在确定天气的危险程度和时间演变时,热力学因素(即温度和湿度)、风和风暴微物理过程(例如冰晶的形成)与雷达反射率一样重要。通过以科学合理的方式使用各种数据源,ITWS 可以通过创建无法从传感器单独获取的信息产品来解决上述不足之处。ITWS 将通过两种方式实现其主要目标,即减少延误:直接向 FAA 主管和交通管理人员提供信息,以便他们能够更积极地工作以实现高效
运营商签订了在 2018 财年年底之前拆除旧设备的合同,但尽管部分拆除工作在 2018 财年年底之前尚未完成,但根据会计法被认为是不适当的案例。按程序支付了拆迁费用,但实际拆迁工作是在财政年度之外进行的。
由于大气中的热吸收温室气体的积累而导致的全球变暖正在推动气候系统的变化,这将对全球海岸线产生严重影响。海平面上升是低洼沿海社区的主要关注点。海洋和冰盖对全球变暖的响应时间很长,沿海环境越来越有可能在未来几十年中遇到危险,例如沿海淹没和侵蚀。海平面由于一系列物理过程而不会均匀增加。在Gippsland海岸线附近,由于东澳大利亚州当前对地区海平面的影响,海平面的上升将略高于全球平均海平面上升。全球变暖也在推动热带扩张,并在地球的主要气候和天气系统中向南变化。是西风腰带中风速的提高,这导致南大洋的波浪气候变化。这反过来可能会影响澳大利亚南部的海岸线。海洋和大气的变暖正在通过更大的风速和降雨量加剧恶劣的天气系统。这些各种因素将导致全球范围内的变化,并且由于当地海平面,风和波浪气候,严重的天气系统和吉普斯兰湖地区极端海平面的变化而对沿海危害产生了复杂的影响。
ART 2000 和 ART 2100 使用的直观颜色生动地描绘了天气状况,让您轻松避开危险的天气系统。使用灵敏度时间逻辑,系统将目标距离与强度关联起来,其衰减补偿可减少阴影。四种鲜艳的颜色(绿色、黄色、红色、洋红色)描绘天气强度。
极端天气事件包括热浪,降雨过多和热带气旋。本报告的重点是热带气旋和相关的风暴潮,高潮和海平面上升,可能会影响亚洲七个主要城市。热带气旋对人类人群带来了主要风险,因此评估未来几十年发生此类事件的可能性的研究很重要(Seneviratne等,2012)。但是,要注意的一个重要因素是,对极端气候事件进行预测以及这些事件影响特定区域的程度极为困难,因为天气系统很复杂,并且基于建模预测的科学数据并不总是准确或完整的。此外,仅在几十年的数据上进行预测,因此科学家难以确定观察到的变化是否是由人为活性,自然变异性或两者组合引起的。
美国是世界上抽水蓄能发电量第二大的国家,共有 43 座电厂,总装机容量为 21.9 吉瓦,估计储能容量为 553 吉瓦时,其中包括世界第二大电厂——位于弗吉尼亚州巴斯县的 3 吉瓦电厂。抽水蓄能发电厂大多建于 20 世纪 70 年代和 80 年代,作为核电的补充,是美国电网的“无声主力”,也是发电系统的支柱,确保了系统的可靠性,但其服务很少得到任何重大认可。但间歇性可再生能源、风能和太阳能的快速扩张,以及天气系统日益变化,极端事件频发,使人们认识到抽水蓄能的价值,并认识到未来需要更多的蓄能。
极端降雨可能发生在各个时间尺度上,包括:•可能导致山洪暴发的短而沉重的爆发•缓慢的天气系统会带来几天的大雨,导致广泛的河流洪水泛滥•持续的大雨的月或季节,通常与LaNiña等全球气候模式相关,例如LaNiña等全球气候,这将更多的水分和雨水推向了该国。随着气候温暖和大气的水分更多,这些事件的特征可能会改变。NESP气候系统中心研究人员一直在努力了解长期降雨极端的变化,通过重点关注影响2020年至2022年澳大利亚东部的潮湿条件。了解气候系统中的行为和相互作用,尤其是在温暖的气候下,为支持基于证据的气候适应和决策提供了关键信息。
自进入太空时代以来的几个世纪里,对地球空间环境的理解呈指数级增长(Jacchia,1959)。所谓的空间天气描述了太阳-地球连接中的“天气”变化,已显示出对平民生活、商业和国家安全(包括通信、导航、电网和卫星操作)的广泛影响(Anthea et al.,2021;Emmert,2015;Malandraki & Crosby,2018;McNamara,1991;Montenbruck & Gill,2000;Skone & Yousuf,2007;Zhang et al.,2019)。由于地球上层大气的存在,大量在100至600公里高度运行的卫星和空间碎片通过大气阻力受到空间天气的显著影响(Chen et al., 2012 , 2014 ; Li & Lei, 2021a ; Qian & Solomon, 2012 )。因此,不断增加的空间物体数量迫切需要准确认识和预报高层大气的四维时空变化以及空间天气系统(Krauss et al., 2020 )。
碳循环稳定性,负责调节对流层中温室气体的水平(地球大气的最低部分),开始于海洋。太平洋厄尔尼诺南部振荡(ENSO)是一种天然存在的大规模气候现象,涉及波动的海温,已经急剧加速,对全球所有天气系统产生了不利影响。世界上的海洋被估计的171万亿个塑料颗粒组成的“塑料烟雾”污染,如果收集的颗粒将重230万吨。海洋中塑料(基于化石燃料)的水平正在迅速改变海洋生态系统的平衡,破坏海洋动物,鱼类和植物及其栖息地。迄今为止,没有政府认为海洋是他们的责任。因为它们是全球系统,而且很少有人在考虑整个星球。作为一种物种,人类在整个系统思维方面一直很差。