色散读出 [1] 是电路量子电动力学工具箱中一种成熟的测量技术。单量子比特读出实验中达到了 99.2% 的保真度 [2],高保真度的多路复用读出也已得到演示,例如在参考文献 [3] 中,对于五个量子比特,平均准确度为 97%。对于近期应用,这已经足够了 [4]。除此之外,当针对更复杂的电路时,特别是那些涉及中间测量反馈的电路,甚至需要更低的错误率。因此,识别潜在的错误源和预测瓶颈非常重要。在这里,我们研究单量子比特色散测量如何与耦合量子比特网络连接。具体来说,我们要回答这个问题:到底测量的是什么?这项工作有助于提高我们对该过程的基本理解,并表明忽略量子比特-量子比特耦合的影响会导致新的错误。这些对于在一次测量后不会终止的量子电路操作尤其重要,因为不仅结果的分布,而且测量后的状态也会受到影响。这个问题以前已经用不同的方法解决了 [ 5 ];在这里我们得出了一些相同的结论,但也提出了新的观察结果。类似的问题也在不同的测量装置中进行了研究 [ 6 , 7 ]。量子比特耦合对于促进双量子比特门是必要的,但否则应该“关闭”。一种方法是让量子比特在频率上保持良好的分离,并有一个固定的耦合——与它们的频率失谐相比要小——然后通过施加交叉谐振驱动来激活它,这种方法最初在 [ 8 ] 中得到证明。在这种情况下,量子比特频率的失谐不能太大,以免过度减慢双量子比特门的速度,也不能太小,以免
摘要:本文给出了二能级半导体量子点系统的解析解,讨论了从激发态(α 12 ,α 21 )的光子辐射跃迁和声子无辐射跃迁的速率、纯失相过程的速率(γ)、失谐参数()和拉比频率(),以及原子占据概率(ρ 11 (t)和ρ 22 (t))、原子粒子数反转(ρ z (t))、纯度(PA (t))、冯·诺依曼熵(S (t))和信息熵(H (σ x )、H (σ y )和H (σ z ))。对于α 12 、α 21 、γ 和的一些特殊情况,我们清楚地观察到所有曲线上出现了长寿命量子相干现象。此外,纯度曲线中的衰减现象非常明显,可以通过改变α 12 ,α 21 和γ的值来简单控制。
引言:里德堡原子中的电子可以被激发到非常大的主量子数[1-3]。由此产生的大偶极矩和极化率会导致特殊效应,如偶极阻塞:在特定体积内,由于前述偶极相互作用,一个以上的原子激发到里德堡态受到抑制[4]。相反,当激发激光与共振频率负向失谐时,会发生反阻塞或促进效应:单个初始激发会在相邻原子中引起更多的激发[5]。将阻塞和促进效应结合起来可以为里德堡原子网络中激发的相干操控提供灵活的方案[6,7]。里德堡原子网络的固有物理特性和相干原子操控方面的卓越技术[8-10]为量子模拟器和更广泛的量子技术提供了丰富多彩的工具箱[1-3,11-17]。里德堡网络还为量子信息处理器提供了有希望的基础[18-20]。我们的方法受到了原子电子学的启发,它封装了超冷原子的属性,通过不同形状和强度的激光场创建电路[21-25]。特别是,诸如原子电子晶体管和冷原子开关之类的原子器件已经被提出[26-28]并实现[29]。执行经典模拟或数字计算的另一个重要构建块是二极管。与电子器件一样,原子电子二极管也是通过将掺杂的导电冷原子系统组合在一起而提出的 [ 21 , 30 , 31 ]。在这里,我们展示了如何利用上述对里德堡激发的控制来构想特定的原子电子器件,其中动力学涉及里德堡激发而不是物质。激发的转移和控制是通过促进机制进行的,其中原子的激发态通过范德华相互作用结合适当选择的频率失谐在相邻原子中诱导激发。通过将这个想法应用于不同的网络,
我们使用 795 nm 拉曼激光器驱动量子比特状态之间的跃迁,该激光器从 5 S 1 / 2 到 5 P 1 / 2 跃迁红失谐 2 π × 100 GHz。我们将激光器耦合到基于光纤的 Mach-Zehnder 强度调制器 (Jenoptik AM785),该调制器在最小透射附近进行直流偏置。调制器以量子比特频率的一半 (ω 01 = 2 π × 6.83 GHz) 驱动,从而产生 ± 2 π × 3.42 GHz 的边带,而载波和高阶边带受到强烈抑制。与其他通过相位调制产生边带然后使用自由空间光腔或干涉仪单独抑制载波模式的方法相比,这种方法在一天的时间尺度上是被动稳定的,无需任何主动反馈。拉曼激光沿着原子阵列排列(与 8.5 G 偏置磁场共线),并且 σ +
集成克尔量子频率梳 (QFC) 具有产生多个可扩展量子态的潜力,已成为宽带纠缠的紧凑、稳定和基本资源。在这里,我们构建了一个通过片上氮化硅微环谐振器设计二分纠缠 QFC 的平台。通过建立克尔非线性微谐振器的系统量子动力学,我们的平台可以支持多达 12 个连续变量量子模式,形式为受磁滞影响的六个同时双模压缩对。频率模式对的纠缠度取决于谐振器结构和环境温度。通过调节腔体温度,我们可以在特定的注入泵浦功率和泵浦失谐下优化纠缠性能。我们全面的 QFC 设计流程和纠缠分布控制可以改善纠缠的产生和优化。
摘要:在本文中,我们证明了2D钙钛矿(PEA)2 PBI 4(PEPI)中的激子/激子an灭是太阳能电池和光发光二极管中的主要损失机制,可以通过抗激元与腔之间的耦合来控制。我们使用时间分辨的瞬态吸收光谱研究激发状态动力学,并表明可以通过通过PEPI层厚度改变腔宽度,从而通过强耦合方式调节系统。非常明显的是,即使腔质量因子仍然很差,也会出现强大的耦合。我们证明,观察到的类似衍生物样的瞬态吸收光谱可以使用时间依赖性的RABI分裂来对其进行建模,而Rabi分裂是由于激子的瞬时漂白而发生的。当PEPI强烈耦合到腔体时,激子/激子歼灭速率被1个数量级抑制。一个依赖北极子部分光子特征的模型将结果解释为失谐的函数。
利用固有自旋轨道相互作用的单自旋操控是一种无需人工磁结构即可旋转自旋的技术 [1],这在半导体传输实验和量子信息技术早期至关重要。在本次演讲中,我们将介绍利用耦合多量子点中出现的自旋翻转隧穿项加速电偶极自旋共振的结果。首先,我们介绍与双量子点中的自旋翻转相关的单自旋隧穿 [2]。接下来,我们将讨论以自旋相干方式利用此效应的测量。通过在充分增加点间隧道耦合后将共振微波频率设置为磁自旋分裂,获得的 Rabi 振荡显示出增强的速度,这取决于微波幅度和点之间的能量失谐。双点中的这种自旋旋转概念扩展到三量子点,我们观察到由于扩展的电荷振荡而导致的更大加速
基于光学跃迁的原子钟长期以来一直具有潜力,可以通过使用激光冷却铯原子中的射频跃迁来测量超越最新基准水平的时间和频率。研究人员已经探索了多种架构来实现这种先进的光学计时器。其中一种系统是光学晶格钟,它基于光学晶格中限制的大量超冷中性原子,具有极高的光学跃迁质量因子 [1] 。晶格钟已开发了大约十年。大量的原子数使测量能够以较低的噪声完成原子态的量子投影。在专门设计的激光势中,严格的原子限制使原子激发不受多普勒和运动效应的影响,这些效应对于未捕获的原子来说是明显的。远失谐激光势在魔法波长下工作,其中被探测电子态的光移被抵消 [2] 。在首次提出光格子钟 [3] 之后,早期演示
无线脑技术正在为基础神经科学和临床神经病学提供新的平台,以最大限度地减少侵入性并改进电生理记录和刺激过程中的可能性。尽管无线脑技术有诸多优势,但大多数系统都需要板载电源和相当大的传输电路,从而限制了小型化的下限。设计能够有效感知神经生理事件的新型简约架构将为独立的微型传感器和微创传输多个传感器打开大门。在这里,我们介绍了一种通过离子敏感场效应晶体管感应脑内离子波动的电路,该晶体管并联失谐一个射频谐振器。我们通过电磁分析确定传感器的灵敏度,并在体外量化对离子波动的响应。我们在啮齿动物的后爪刺激过程中在体内验证了这种新架构,并验证了与局部场电位记录的相关性。这种新方法可以作为集成电路实现,用于无线原位记录脑电生理。
量子纠缠作为一种重要资源是量子力学最显著的特征之一,在量子信息论、量子隐形传态[1]、通信和量子计算[2,3]中都发挥着核心作用。由于其基础性作用,在分离子系统之间产生纠缠态是一个重要课题。近年来,已提出了多种产生纠缠态的方法,其中之一就是 Jaynes-Cummings 模型 (JCM)。JCM 解释了量化电磁场和原子之间的相互作用 [4]。JCM 是一个简单但适用的工具。在过去的二十年里,人们致力于将 JCM 应用到量子信息[5-7]和量子隐形传态[8]中。由 JCM 诱导的纠缠态已被用作量子通道 [9]。 Zang 等人 [10] 利用两能级原子与大失谐单模腔场相互作用,将二分非最大纠缠态转变为 W 态。原子与单模电磁腔场相互作用的纠缠动力学已被研究 [11]。由于 JCM 在量子光学中的重要性,它已被扩展