背景:精神分裂症的治疗通常涉及使用奥氮平(OLZ),这是一种典型的抗精神病药,由于其低溶解度和第一频率效应,其口服生物利用度较差。目标:准备和优化OLZ作为纳米颗粒,以避免口服给药问题。方法:通过使用不同比率的不同聚合物,将纳米沉淀技术用于制备八个OLZ纳米颗粒。纳米颗粒,包括粒径,多分散指数(PDI),夹带效率(EE%),ZETA电位和体外释放研究。通过场发射扫描电子显微镜(FESEM)和原子力显微镜(AFM)评估形态。我们还执行差异扫描量热法(DSC)。结果:OLZ纳米颗粒的表征研究表明,OLZ -6是粒径为115.76 nm的最佳配方,PDI为0.24,EE的高度为78.4%,高ZETA潜力为-19.01 MV。OLZ的体外释放高于其他制剂。fesem揭示了纳米颗粒的球形形状,AFM筛选证实了OLZ-6的大小与Zeta Sizer的发现相当。DSC结果证实了OLZ的纯度以及药物和聚合物之间的兼容性。结论:OLZ-6作为透皮递送系统,是克服与口服药物相关的问题并可能提高其生物利用度的有希望的公式。
当前研究的目的是制定乙基纤维素和羟基丙基纤维素基于持续的释放微球,其中包含兰索拉唑作为模型药物。兰索拉唑是II型抗粉药剂时,在其作用中显示出协同作用。 通过W/O/O双乳剂 - 溶剂蒸发方法以不同的稳定剂浓度和不同的乳化速度制备微球,同时保持恒定量的兰索拉唑。 药物脱离的兼容性研究是在制剂开发前通过傅立叶转化红外光谱(FTIR)进行的,仅在微球制造中仅使用兼容的赋形剂。 制备的微球制剂的特征是产量百分比,粒度分析,药物夹带效率,通过扫描电子显微镜(SEM),差分扫描比色法(DSC)和维特罗药物释放行为,表面形态。 将兰索拉唑的熔点,溶解度和紫外线分析等预性研究符合IP标准。 通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。 通过改变表面活性剂和速度的浓度来制备微球。 粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。兰索拉唑是II型抗粉药剂时,在其作用中显示出协同作用。通过W/O/O双乳剂 - 溶剂蒸发方法以不同的稳定剂浓度和不同的乳化速度制备微球,同时保持恒定量的兰索拉唑。药物脱离的兼容性研究是在制剂开发前通过傅立叶转化红外光谱(FTIR)进行的,仅在微球制造中仅使用兼容的赋形剂。制备的微球制剂的特征是产量百分比,粒度分析,药物夹带效率,通过扫描电子显微镜(SEM),差分扫描比色法(DSC)和维特罗药物释放行为,表面形态。将兰索拉唑的熔点,溶解度和紫外线分析等预性研究符合IP标准。通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。 通过改变表面活性剂和速度的浓度来制备微球。 粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。微球。粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。粒度的增加,乳化剂浓度增加(SPAN-80)。以增加的搅拌速度获得较小的尺寸。有趣的是,观察到粒径对体外药物释放没有显着影响。因此,乳化剂产生了更好的表面特征。使用F4公式观察到最高的夹带疗效,其表面活性剂浓度为0.5%,速度为1000 rpm,因此被选为最佳配方。随着恒定表面活性剂浓度下旋转速度的提高,观察到封装效率的提高。在持续旋转速度下的表面活性剂浓度增加会导致药物的封装效率降低。DSC数据表明该药物与两个聚合物之间没有相互作用,这也表明两种药物都分散在无定形状态的聚合物中。SEM研究表明,微球是球形形状,具有粗糙的表面形态,并且发现了颗粒。体外释放曲线在12小时内释放了兰索拉唑的缓慢而稳定的释放模式,发现该药物释放是扩散控制机制,具有Korsmeyer Peppas方程的N值表明非叶酸质量的非叶酸类型。由于这些实验的结果,得出结论,持续释放的微球持续释放的微球通过使用双重乳液 - 溶剂溶剂蒸发技术成功制备了使用乙基纤维素和羟基甲基纤维素作为聚合物的组合。
摘要:在海洋表面附近形成的昼夜温暖层(DWL),天数太阳辐射,弱至中等风和小的地表波效应。在这里,我们使用理想化的第二矩湍流建模,并用大型模拟(LES)验证,研究在整个物理相关的参数空间中DWLS的属性,动力学和能量。两种类型的模型都包括Langmuir湍流(LT)的表示。我们发现,在平衡波条件下,LT仅稍微修改DWL厚度和其他散装参数,但导致表面温度和速度的降低,可能对空气 - 海耦合产生影响。比较热带和较少研究的高纬度DWL,我们发现LT对能量预算有很大的影响,并且高纬度的旋转强烈改善了DWL Energetics,抑制了净能量转移和夹带。我们确定了DWL演变的关键非二维参数,并发现Price等级的比例关系。在包括高纬度DWL在内的宽参数空间上提供了DWL块状特性的可靠表示。我们预先发送了不同的修订模型系数,其中包括由于LT和我们更先进的湍流模型的其他方面加深DWL,以描述中午和下午DWL温度峰值的DWL属性,我们将在1500 - 1630年发生在众多参数范围内发生在1500 - 1630年左右。
口服药物给药被广泛认为是最实用,最广泛使用的方法。半衰期短,胃肠道容易吸收的药物很快被血液清除。为了避免这些问题,已经创建了口服控制释放的公式。在药物输送系统领域中有大量的新型制定方法。如今,一种新的新颖方法正在变得越来越受欢迎。各种各样的活性化学物质可以被高度交联的多孔,聚合物结构所捕获,该结构构成了Microsponges递送系统(MDS)。各种聚合物(如乙基纤维素,聚苯乙烯等)已被用于形成微孔料,这些活性的微型物质可以纳入胶囊,凝胶和粉末等配方中,并具有广泛的益处。微 - 在1到11的pH值上具有令人满意的稳定性,它们在高达130的温度下表现出合理的稳定性,并且夹层效率很高,达到50-60%。微物质的制备涉及准乳液溶剂方法,而乳液溶剂扩散法释放药物通过微孔料释放随着药物聚合物比率的增加和降低聚合物壁厚的厚度而增加。微 - 特征是视觉表征,Zeta电位,夹带效率和药物含量的特征。本综述将其优于其他剂型,制备方法,表征和应用微 - 一种的优势。
抑制性神经元在生物节奏的起源中起重要作用。他们夹带大脑中的远程电活动[1],并产生控制运动动作的时空信号[2,3]。抑制网络的显着特性是它们支持共同振荡共存模式的能力[4-8],这引起了感觉刺激[9-11]。然而,理论上预测的振荡数量与实验观察到的相对缺乏[13-15]之间存在很大差异。这种差异可能来自吸引子之间对噪音的不同公差[16]。对中央模式发生的实验表明,所有极限周期吸引子在轻度噪声水平和异质性中都能生存[11];但是,它们在大噪声水平上的稳定性尚不清楚。对甲壳类中央模式发生器的实验表明,生物节奏仅存在于有限的温度范围内[17]和pH水平[18]。在此范围之外的振荡之外,振荡变成了心律不振。因此,需要一个客观的度量来预测生物节奏的稳定性范围。在保守的系统中(Hop Field Networks [19],Boltzmann机器[20]),吸引子的鲁棒性是通过代表位配置的潜在景观中的激活能来定义的。我们在这里关注的耗散系统(中央模式发生器,大脑)没有等效的潜在景观,因为该州是时间的定位。Graham和Tél[21,22]引入了伪电势; Stankovski等。已经进行了理论尝试来描述与时间无关的功能的相互作用。但是,统一的理论描述尚未出现。[23,24]多变量耦合函数;而其他
液滴撞击固体和液体表面是技术应用中遇到的各种现象的关键要素,例如喷墨打印、热表面的快速喷雾冷却(涡轮叶片、钢铁生产轧机的轧辊、激光器、半导体芯片和电子设备)、铝合金和钢材的退火、淬火、洒水灭火、内燃机(汽油发动机的进气管或直喷式柴油发动机的活塞碗)、焚化炉、喷漆和涂层、等离子喷涂和农作物喷洒。结构材料的微加工、印刷电路板上的焊料凸块、通过精密焊料滴分配产生的微电子电路以及液体雾化和清洁以及电线和飞机上的冰积聚也涉及液滴撞击。后者在刑事取证、非润湿或完全润湿表面的开发、用微滴高精度地活化或钝化基质、将表面污染物输送到散装液体中以及气体截留中也发挥重要作用。理解伴随的物理现象对于在喷雾模拟的数值代码中制定可靠的边界条件至关重要。湖泊、海洋和海洋表面层的通气等大规模和普遍的自然现象都依赖于雨滴撞击引起的气泡夹带。这些在海洋表面的撞击导致向上的射流和二次液滴的形成,这些液滴蒸发并形成盐晶体。后者作为云的成核点,与气象学有关。土壤侵蚀、孢子和微生物的扩散以及降雨时的水下噪音是另外三种涉及雨滴撞击的自然现象。雨水落在水坑和池塘上时,钉状的射流和气泡是一种常见的景象。
为了获得均匀的混合物,必须将树脂和硬化剂预热至约 50 至 60°C。必须使用平铲和干净的一次性容器将两种成分混合,直到获得均匀一致颜色的均匀物质,无空气、块状或条纹,避免混入空气。它还可以在低转速下进行机械混合,以防止过多的空气夹带。在一些对电气要求较高的应用中,必须在真空室中对组件进行混合和脱气。真空下的混合时间取决于质量,为0.5至3.5小时。在自动配料和混合装置中,两种组分都必须在储罐中以 2 mbar 的压力脱气至少 45 分钟。一旦组件脱气完毕,就必须将其移除以防止负载沉淀。使用静态混合器喷嘴进行配料和混合后,可以将其转移到 10 – 15 mbar 的真空罐中,或者直接转移到 APG 工艺中的热模具中。在低于25°C的温度下,混合料的有效适用期为24至48小时。传统的混合容器应至少每周清洗一次或在工艺结束时清洗。对于较长的生产期,建议将储罐和传导管冷却至 18°C 的温度,以防止化合物过早硬化。对于压力凝胶工艺 (APG),可通过向总树脂中添加至少 0.2% 的 DY 062 促进剂来调整反应性。应注意,添加促进剂会缩短混合物的使用寿命。 。
射流冲击冷却被视为高功率电子设备热管理的绝佳选择。然而,它的缺点是高压降损失和远离射流区域的低局部传热系数。尽管据报道回流区是由于夹带而出现的,但是回流尺寸对热行为的影响尚不清楚。在这里,在数值研究中采用带有收敛环形通道的射流冲击散热器,以最大限度地减少微通道中冲击射流带来的不利冷却影响。可实现的 k − ε 湍流模型用于模拟热场和湍流流场(Re = 5,000 至 25,000)。研究发现,小尺度上不同的流动回流区是增强传热速率的原因。虽然在 Re 数较低时,收敛壁面射流冲击散热器的热性能高于其平板壁面散热器,但在 Re 数较高时,热性能结果有利于平板壁面射流冲击散热器。在 Re 数较高时,收敛通道中的流动再循环面积会缩小,因此与平板壁面射流散热器相比,收敛通道的热性能会下降。此外,研究发现,采用更陡的收敛通道会缩小流动再循环区域,导致 Re = 25,000 时压降降低高达 59%。本研究考察了不同 Re 数下流动再循环对射流冲击收敛环形散热器热工水力性能的影响。
受控释放的微粒为增强患者兼容并最小化剂量频率的途径提供了有希望的途径。在这项研究中,我们旨在设计使用Eudragit S100和Methocel K 100 M聚合物作为控制剂的Glipizide的受控微粒。通过一种简单的溶剂蒸发方法制造了微粒,采用各种药物与聚合物比例制造出标记为F1至F5的不同受控释放批次。对微粒的评估包含一系列参数,包括流量性能,粒度,形态,百分比,捕获效率,药物加载百分比和溶解研究。此外,还采用了各种动力学模型来阐明药物释放机制。此外,还利用了差异和相似性因子来比较测试公式的溶解轮廓与参考公式。可压缩性指数和休息角表示所制备的微粒的有利流量,其值分别在8至10和25至29的范围内。从95.3到126μm的微粒的粒径分布。令人鼓舞的是,微粒的产量高(66%至77%),夹带效率(80%至96%)和药物加载百分比(46%至54%)。所有配方的批处理均显示出受控的药物释放曲线,最多延长了12个小时,在异常的非棘手扩散模式之后,glipizide释放。然而,参考公式和各种聚合物微粒的药物释放曲线不能满足可接受的差异和相似性因子的限制。体内研究表明在12小时内持续降血糖作用,表明受控释放的微粒的功效。总体而言,我们的发现表明,在设计受控释放的微粒中成功利用了聚合物材料,从而降低了点频率并有可能提高患者的依从性。
目的:诸如地震之类的自然灾害经常导致受影响的个体的睡眠障碍。在外周神经损伤中看到的神经性疼痛与睡眠障碍有关。这项研究旨在评估神经性疼痛对在2023年2月6日发生的以Kahramanmaraş为中心的地震期间遭受周围神经损伤的患者对睡眠质量的影响,并从瓦砾中获救。方法:该研究包括45个具有电生理学确认的周围神经损伤的地球量表幸存者,年龄在18岁及以上。疼痛,并使用Leeds的神经性症状和体征(LANS)的土耳其语版本评估神经性疼痛的存在。使用匹兹堡睡眠质量指数(PSQI)评估睡眠质量,并使用医院的焦虑和抑郁量表(HADS)评估了焦虑和抑郁水平。结果:在遭受周围神经损伤的地震受害者中,发现45人中有31人(69%)患有神经性疼痛。在睡眠质量较差(PSQI≥5)的地震幸存者中,瓦砾下的夹带持续时间,肢体VAS得分,LANSS得分以及HADS抑郁和焦虑得分明显更高(P = 0.018,P = 0.001,P = 0.001,P = 0.008,P = 0.008,P = 0.001,以及P = 0.001,以及P <0.001)。兰斯分数与肢体VAS和PSQI得分具有正相关(r = 0.356,p = 0.016和r = 0.486,p = 0.001)。结论:这项研究表明,由于周围神经损伤引起的神经性疼痛的强度在地震受害者中很高,睡眠质量较差。有必要制定针对性的干预措施,以应对周围神经损伤的地震幸存者面临的独特挑战。