摘要:采用激光定向能量沉积 (L-DED) 技术制备了接近全密度且无裂纹的 AISI H13 热作工具钢。研究了两种不同的热处理方案,即从成品 (AB) 状态直接回火 (ABT) 和回火前系统化和淬火 (QT),并报告了它们对 L-DED H13 的微观结构、硬度、断裂韧性 (K app ) 和回火抗力的影响。为此,确定了最佳奥氏体化制度,并制作了回火曲线。在相似的硬度水平 (500 HV1) 下,QT 部件的 K app (89 MPa √ m) 高于 ABT (70 MPa √ m)。然而,这两个部件获得的断裂韧性值与锻造 H13 相当。考虑到高温奥氏体化过程中发生的微观结构均质化和再结晶,讨论了 QT 对应部件中稍大的 K app。 ABT 材料在 600 ◦ C 下的回火抗力与 QT 材料相比略有改善,但对于更长的保温时间(长达 40 小时)和更高的温度(650 ◦ C),ABT 表现出优异的耐热软化性能,这是由于其马氏体亚结构(即块尺寸)更细小、二次碳化物尺寸更细小以及二次 V(C,N)碳化物的体积分数更大。
3D打印,又称增材制造(AM),自1987年以来得到了迅速发展。与传统制造方法相比,3D打印具有提高材料利用率、减少材料浪费等优势。马氏体时效钢具有良好的强度和韧性,且不损失延展性,已用于3D打印技术。选择性激光熔化(SLM)是3D打印方法之一,主要用于金属和合金粉末。本文将选择性激光熔化用于马氏体时效钢。3D打印马氏体时效钢是一种新材料,关于3D打印马氏体时效钢性能的研究仍在进行中。由于腐蚀成本高,耐腐蚀性是马氏体时效钢最重要的性能之一。因此,本论文将重点研究3D打印马氏体时效钢的腐蚀行为。本论文的目的是找到高耐腐蚀性的最佳热处理条件,并找到马氏体时效钢微观结构与腐蚀行为之间的关系。本文使用了几种具有不同热处理条件的马氏体时效钢样品。 SLM、SLM奥氏体化&淬火、SLM时效、常规奥氏体化&淬火、常规时效。此外,还制备了两种溶液,NaOH(pH=11.5)和Na2SO4(pH=6.5)。使用光学显微镜观察微观结构。SLM和常规样品的晶粒尺寸不同,不同热处理条件的样品的晶粒尺寸也不同。使用动电位极化法测量腐蚀行为。与常规样品相比,SLM样品的电流密度低得多,钝化电位和腐蚀速率相似。但由于缺乏进一步的实验,腐蚀行为之间的关系可能受到多种因素的综合影响。
由于生产率高,增材制造 (AM),尤其是使用激光和金属粉末的定向能量沉积 (DED-LB/M) 对于制造具有集成功能的工具很有吸引力。本研究致力于 DED-LB/M 制造实验性马氏体时效工具钢、使用先进电子显微镜表征构建微观结构以及评估硬度性能。观察到最终构建的高可打印性和低孔隙率,对于使用 600 W 和 800 W 制造的样品,相对密度不低于 99.5%,但构建的微观结构和性能沿高度呈梯度。观察到取决于制造参数的特征硬度分布和微观结构。制造的马氏体时效钢样品的顶层具有马氏体结构,沉淀物可能在凝固过程中形成。因此,顶层在奥氏体化等温线的深度处较软。在内部区域测量到更高的硬度,这是制造材料在逐层制造过程中进行原位热处理的结果。制造过程中的热循环导致内部区域产生沉淀硬化效应。扫描和透射电子显微镜证实,在顶部和内部区域的原始材料中形成了薄膜状和圆形颗粒。然而,仅在内部区域观察到准晶纳米级 R ' 相沉淀物。制造过程中由于原位热处理而沉淀的 R ' 相的形成是内部区域测得的硬度较高 (440 – 450 HV1) 的原因。