从数据手册中给出的框图中可以得出一个稍微简化的内部架构(图 10)。Microchip 在其微控制器中采用的这种架构的特点是代码和数据存储器之间的独立性。因此,每个存储器的容量和总线大小都严格适应设计需求,便于两个存储器并行工作,从而获得高性能。RISC 理念体现在其指令库的少量指令中。它仅包含 35 条指令,这些指令在一个指令周期内执行,相当于四个时钟周期,但跳转指令除外,这些指令需要两个周期。
本文介绍了在世界上第一个电网规模 150 kW e 泵送热能存储 (PHES) 演示系统的调试和测试中开展的研究。该系统采用了两个新型分层填充床热存储器。本研究通过实验研究了其中一个被称为“热存储器”的存储器,其能量存储密度为 1072 MJ/m 3 ,存储温度为 500 ◦ C ,压力为 12 bar。分层存储器是普通填充床存储器的增强版,可提供更高程度的热分层。实验表明,分层可使压力损失降低约 64%,同时产生更窄的温跃层。在考虑标称设计条件下的简单和分层模式操作的情况下,基于第一定律分析计算了往返效率、存储容量和利用率。考虑了两种循环控制场景:基于时间和基于温度。在基于时间的场景中,存储器在两种模式下的性能几乎相似。然而,在基于温度的场景中,分层模式表现更佳。在循环运行期间,分层模式表现更佳,因为它仅在第 3 个循环中就达到稳定状态,且效率、容量和利用率没有任何损失;简单模式的效率具有竞争力,但容量和利用率在每个连续循环后都会下降,并且在第 20 个循环中达到稳定状态。还进行了第二定律分析,以深入了解各种损失及其对性能的影响。
摘要 — 混合存储器系统由新兴的非易失性存储器 (NVM) 和 DRAM 组成,已被提出用于满足应用程序日益增长的存储器需求。相变存储器 (PCM)、忆阻器和 3D XPoint 等新兴 NVM 技术具有更高的容量密度、最小的静态功耗和更低的每 GB 成本。然而,与 DRAM 相比,NVM 具有更长的访问延迟和有限的写入耐久性。两种存储器类别的不同特性指向包含多种主存储器类别的混合存储器系统的设计。在新架构的迭代和增量开发中,模拟完成的及时性对于项目进展至关重要。因此,需要一种高效的模拟方法来评估不同混合存储器系统设计的性能。混合存储器系统的设计探索具有挑战性,因为它需要模拟整个系统堆栈,包括操作系统、内存控制器和互连。此外,用于内存性能测试的基准应用程序通常具有更大的工作集,因此需要更长的模拟预热期。本文提出了一种基于 FPGA 的混合存储系统仿真平台。我们的目标是移动计算系统,该系统对能耗敏感,并且可能会采用 NVM 来提高能效。在这里,由于我们的平台专注于混合存储系统的设计,因此我们利用板载硬 IP ARM 处理器来提高模拟性能,同时提高结果的准确性。因此,用户可以使用 FPGA 逻辑元件实现其数据放置/迁移策略,并快速有效地评估新设计。结果表明,与软件 Gem5 相比,我们的仿真平台在模拟时间上加快了 9280 倍。索引术语 — 硬件仿真、FPGA 加速器、内存系统、NVM
随机存取存储器是一种内部芯片,在运行应用程序时,数据会暂时存储在其中。这种存储器可以写入和读取。由于计算机断电时其内容会丢失,因此通常被称为易失性或临时存储器。
一种基于低功耗改进型 PPN SRAM 单元的存储器阵列的新型设计及其对高速缓存存储器的分析评论 Gavaskar K、Surendar N、Thrisali S、Vishal M 电子与通信工程系 Kongu 工程学院 Perundurai,Erode – 638060,泰米尔纳德邦,印度。邮件 ID:gavas.20@gmail.com 摘要 – 高速缓存存储器是存储重复数据和执行操作的指令所必需的存储空间。现代处理器的速度已经显著提高,但存储器增强主要集中于在更小的空间中存储更多数据并减少延迟的能力。本文提出的基于 PNN 反相器的 10 T SRAM 单元电路由 2 个交叉耦合的 PNN 反相器(1 个 PMOS 和 2 个 NMOS 晶体管)、单端独立读取电路(2 个 NMOS 晶体管)和 2 个存取晶体管(2 个 NMOS)组成。将不同的漏电流控制技术(如 LECTOR 和 KLECTOR)应用于 10T PPN 和 10T PNN SRAM 单元以提高其保持性能,并比较其结果。8X8 存储器阵列由存储器单元、行和列解码器、预充电电路、感测放大器和写入驱动器电路组成。测量了读取、写入和保持操作的各种参数(如延迟、动态功率、功率延迟积、漏功率和静态噪声裕度),并与其他 SRAM 单元进行了比较。CADENCE Virtuoso Tool 用于设计 90 nm 技术中的各种电路。模拟结果表明,与其他单元相比,所提出的 SRAM 单元具有更好的性能,因此它可用于创建阵列结构。与其他阵列结构相比,基于 8X8 10T PNN SRAM 单元的阵列具有更低的功率和更少的延迟。
存储器是当今电子系统中用于数据存储和处理的关键组件。在传统的计算机架构中,由于存储器之间在操作速度和容量方面的性能差距,逻辑单元和存储器单元在物理上是分开的,从而导致冯·诺依曼计算机的根本限制。此外,随着 CMOS 技术节点的演进,晶体管变得越来越小,以提高操作速度、面积密度和能源效率,同时提供更低的驱动电流。然而,嵌入式闪存和 SRAM 等主流技术正面临着重大的扩展和功耗问题。更密集、更节能的嵌入式存储器将非常可取,特别是对于 14 纳米或更小的先进技术节点。与操纵非磁性半导体中的电荷来处理信息的传统电子设备不同,自旋电子器件基于电子自旋,提供创新的计算解决方案。为了将自旋电子学融入到现有的成熟的半导体技术中,基于自旋的器件一般设计以磁隧道结为核心结构,起到磁随机存取存储器(MRAM)的作用。
被执行,并且除了在条件跳转指令执行期间之外,在每个指令周期结束时加一。在步骤 1 期间,控制计数器操作存储器选择电路,并且在步骤 1 结束时,包含下一条指令的指定存储器字被读入静态寄存器。两个左边的位被解码为操作,并且该信息被发送到功能选择电路,在那里,结合步进计数器和时钟信号,生成所有指令所需的门控脉冲。两个右边的位指定操作数地址,被发送到存储器选择电路,允许读出所需的数据字。所有这些都发生在步骤 1 期间。实际的指令执行在最后三个步骤中的一些或全部期间进行。
1985 年 4 月 加入山口 NEC 株式会社 2000 年 7 月 加入广岛 NEC 株式会社 2004 年 4 月 加入广岛 Elpida Memory 株式会社 2005 年 6 月 晶圆测试本部部长、晶圆测试技术本部部长 2005 年 9 月 本公司董事 2007 年 4 月 本公司董事、CPO 2010 年 2 月 本公司董事、存储器事业本部部长 2010 年 3 月 TeraPower Technology Inc. 董事 2011 年 6 月 本公司董事、执行官、存储器事业本部长 2011 年 10 月 Teramikros, Inc. 董事 2012 年 6 月 本公司董事兼 COO、存储器事业本部长 2014 年 5 月 本公司董事兼 COO、存储器事业本部长、CSO 兼 CMO 2014 年 6 月 本公司董事兼 COO、存储器事业本部长 2015 年 7 月 本公司董事兼 COO 2016 年 6 月 本公司董事、执行副总裁兼 COO 10 月2016 年 测试运营事业本部长 2019 年 3 月 本公司董事、执行副总裁兼法定执行官,负责测试运营管理、品质保证、采购和销售 2020 年 3 月 本公司董事、总裁兼代表法定执行官(现任) 2020 年 4 月 TeraPower Technology Inc. 董事(现任)(重要兼职) TeraPower Technology Inc. 董事