§ 打一场像样的乒乓球比赛?§ 玩一场像样的《危险边缘》游戏?§ 沿着弯曲的山路安全行驶?§ 沿着电报大道安全行驶?§ 在网上购买一周的杂货?§ 在伯克利保龄球馆购买一周的杂货?§ 发现并证明一个新的数学定理?§ 与另一个人成功交谈一小时?§ 进行外科手术?§ 收拾碗碟并叠衣服?§ 实时将口语中文翻译成口语英语?§ 写一个故意搞笑的故事?
现场行动局 (FOB) FOB 负责全州 8 个地理区域和 18,642 车道英里的州高速公路和州际公路的交通执法、碰撞调查和机动车援助。 商用车执法局 (CVEB) CVEB 负责在州高速公路上促进和教育商用车的安全行驶、加强学童的安全交通以及保护州的基础设施。 CVEB 的财产管理部负责整个机构的所有机构设施、车队车辆、制服和设备。 调查服务局 (ISB) ISB 通过以下方式为部门和许多其他机构的交通和调查项目提供全面的重罪刑事调查和支持服务:
根据UITP世界地铁图2021报告,在2018年初至2020年底之间进行了大约3,300公里的新铁路基础设施。在这段时间内,全球运营的车队增加了28,000辆,总共140,000辆汽车。在2019年,全球平均每天有1.9亿乘客。铁路运营商一直在努力使火车安全行驶,为骑手提供优质和可靠的服务,并降低其运营成本。在1980年代中期引入了一种现代的铁路信号系统,称为“基于通信的火车控制(CBTC)”,目的是在保持安全要求的同时实现最大容量。2023年10月23日,运输安全局(TSA)更新了网络安全指令 - 增强铁路网络安全 - SD 1580/82-2022-01,通过实施分层的网络安全度量,以降低风险危险性,以降低型号的行为,以调节乘客和货运铁路运营商,以降低型号的电视措施。
摘要 - 能够在没有人工干预的情况下运行的车辆的出现彻底改变了汽车行业,从而提供了更安全,更有效的运输系统的前景。现在有几天,事故正在增加,并且没有特定的道路安全程序。在这个项目中,我们提出了一个在Raspberry Pi平台,自动驾驶汽车,车道检测,功能上实施的自动驾驶系统。系统使用覆盆子Pi,与PI配对,相机模块可以轻松捕获图像视频以实时捕获和处理。车道检测,以检测道路上的车道标记,从而使车辆能够在车道内保持并安全行驶。拟议的系统旨在提供全面的自动驾驶解决方案,该解决方案可以在低成本硬件和轻量级深度学习模型上实施,从而使其可用于研究,教育和原型设计。该系统展示了自动驾驶汽车的潜力,旨在在其自己的现实环境中安全,智能地导航。关键字 - 自动驾驶,Raspberry Pi,车道检测,实时系统,开放式简历。
摘要:在电动汽车 (EV) 中,使用多种能源通常可以保证安全行驶,而无需担心续航里程。电动汽车由光伏 (PV)、电池和超级电容器 (UC) 系统供电。这种安排的总体结果是行驶距离增加;电池尺寸减小;反应改善,尤其是在过载情况下;以及电池寿命延长。改进的结果可以高效利用能源,提供舒适的驾驶体验,并且需要更少的能源。在本研究中,讨论了 PV 系统和混合储能系统 (HESS)(包括电池)和 UC 之间的能源管理。提出了称为人工神经网络 (ANN) 和 Aquila 优化算法 (AOA) 的能源管理控制算法。所提出的组合 ANN-AOA 方法充分利用了 UC,同时限制了电池放电电流,因为它还可以缓解高速动态电池充电和放电电流。在 MATLAB 仿真环境中描绘和查看响应行为,以表示负载变化和各种道路状况。我们还讨论了光伏系统、电池和 UC 之间的管理,以实现与现有的改进型和声搜索 (MHS) 和基于遗传算法的比例积分微分 (GA-PID) 相比更高的 91 公里/小时的速度。这项研究的成果可以帮助汽车行业的研究人员和专业人士以及参与设计、维护和评估各种能源和存储系统(尤其是可再生能源)的各种第三方。
摘要:由于现代人工智能 (AI) 技术(尤其是深度神经学习)的大量工作,智能交通系统(尤其是自动驾驶汽车)引起了研究人员的极大兴趣。由于过去几十年来道路交通事故的增加,重要行业正在转向设计和开发自动驾驶汽车。了解周围环境对于了解附近车辆的行为至关重要,以确保自动驾驶汽车在拥挤的交通环境中安全行驶。目前有多个数据集可用于仅关注结构化驾驶环境的自动驾驶汽车。为了开发一种在本质上非结构化的真实交通环境中行驶的智能汽车,应该有一个专注于非结构化交通环境的自动驾驶汽车数据集。印度驾驶精简版数据集 (IDD-Lite) 专注于非结构化驾驶环境,于 2019 年 NCPPRIPG 作为一项线上竞赛发布。本研究提出了一种可解释的基于初始的 U-Net 模型,并结合 Grad-CAM 可视化进行语义分割,该模型结合基于初始的模块作为编码器以自动提取特征,并传递给解码器以重建分割特征图。深度神经网络的黑箱性质无法在消费者中建立信任。Grad-CAM 用于解释基于深度学习的初始 U-Net 模型,以增加消费者信任。提出的带有 Grad-CAM 模型的初始 U-Net 在印度驾驶数据集 (IDD-Lite) 上实现了 0.622 的交并比 (IoU),优于最先进的 (SOTA) 基于深度神经网络的分割模型。
Sevagram,Wardha指导者:H.S.Belsare摘要:在这项研究中,一种新型的自动驾驶汽车导航算法,避免了与行人和临时障碍的碰撞。提出的算法通过使用RGB-D深度传感器来预测临时障碍和徘徊的行人的位置。考虑到这些环境不确定性,介绍了唯一的临时视觉流动性规则。提出了一种深入的增强学习(DRL)算法作为决策技术(以引导自动驾驶工具无事发生)。比较了深层Q-NETWORK(DQN),双重Q-Network(DDQN)和Dueling Double Deep Q-Network(D3DQN)算法,并且D3DQN的负率最少。我们使用CARLA模拟环境测试了算法,以检查RGB-D和RGB-LIDAR的输入值。构成综合神经网络D3DQN的一系列算法被选为最佳DRL算法。在减慢城市流量的建模中,RGB-D和RGB-LIDAR产生的结果基本相同。修改了更新的儿童驾驶汽车的自动驾驶版本,以证明拟议算法的实时效率。索引术语:自动驾驶工具,深度加固学习,临时凸进,避免障碍物,车道检测,对象检测。1。引言临时或临时障碍,例如路障,坑洼,速度颠簸和漫游行人,可能会为印度和类似国家的自动驾驶车辆提供挑战。另外,自动驾驶车辆可以使用Vanet(车辆临时网络)与路边单元或另一个移动车辆进行通信,以收集有关事故,道路障碍,交通拥堵和天气状况的最新信息。这种类型的信息对于允许自动驾驶车辆安全行驶并防止道路事故也很重要。研究人员已将传感器安装在车辆上,以识别临时障碍,例如,一些研究人员使用这些传感器来指导自动驾驶车辆,例如,一些研究人员开发了一种基于智能手机的Ad Hoc-Obstacle检测算法。同时,在中央服务器上记录了有关已确定障碍物(类似位置)的信息,并用于提醒其他驾驶员在同一道路上行驶的驾驶员。
Google无人驾驶汽车是一款自动驾驶的汽车,可以安全,合法和舒适地在道路上航行。它结合使用Google地图,硬件传感器和人工智能软件来控制其运动。该项目由塞巴斯蒂安·瑟伦(Sebastian Thrun)领导,他还共同发明了Google Street View,并赢得了2005年DARPA大挑战赛。汽车将Google地图与各种硬件传感器集成在一起,包括LiDAR,摄像机,距离传感器和位置估算器。LIDAR技术使汽车可以测量最多60米的距离,而摄像机检测到即将到来的交通信号灯。距离传感器使汽车能够“查看”附近或即将到来的汽车或障碍物。位置估计器确定车辆的位置并跟踪其运动。人工智能软件从Google地图和硬件传感器接收数据,确定何时加速,放慢,停止或引导轮子。AI经纪人的目标是安全和合法地将乘客运送到所需的目的地。截至2012年,内华达州已经对Google无人驾驶汽车进行了测试,六辆汽车乘以140,000英里,偶尔进行人工干预。这项技术有可能彻底改变全球运输系统。回顾我在2014-2015学年在浦那大学的工程旅程,在AISSMS-SCOE的Gaikwad和Head Computer Engineering系的指导下,这是令人难以置信的启发性。我最真诚的感激之情延伸到A.M. Jagtap教授,他不仅提供了宝贵的指导,而且在整个学术期限内都为我提供了支持。自动驾驶汽车将控制驾驶,使用传感器来检测障碍物并相应地调整速度。这需要多种技术,包括车道检测,障碍物检测,自适应巡航控制,避免碰撞和横向控制。此外,传感器将监视道路状况,调整速度以确保安全行驶。完全自动化汽车是一项复杂的任务,但是在单个系统中取得了进步。配备了雷达,激光镜头和摄像机的Google的机器人汽车可以快速,准确地处理信息,从而做出决策并比人类更好地实施它们。这项技术有可能减少与交通相关的伤害和死亡,同时优化能源使用和道路空间。该系统结合了来自包括Google Street View在内的各种来源的数据,以创建完全自主的驾驶体验。过道Coe,浦那。车辆的转向和制动系统由通用处理器直接控制。该系统从各种来源接收感官输入,包括LiDar,Radar,位置估计器和Street View图像。LIDAR创建了一个三维平台,用于映射障碍物和地形。相机视觉馈电用于检测交通信号的颜色,使车辆能够相应地移动。同时,处理器不断与发动机控制单元进行通信。发动机控制单元具有硬件传感器,包括雷达,它使用无线电波来检测对象并确定其范围,高度,方向或速度。视觉选择会影响角分辨率和检测范围。雷达技术具有多种应用,例如空中交通管制,天气监测和军事系统。高科技雷达系统能够从高水平的噪声中提取物体。雷达系统以预定的方向传输无线电波,然后将其反映和/或被对象散射。反射回发射器的信号使雷达成为可能。如果一个物体移动更近或远,则由于多普勒效应,无线电波的频率发生了略有变化。雷达接收器通常位于发射器附近,电子放大器加强了接收天线捕获的弱信号。还采用复杂的信号处理方法来恢复有用的雷达信号。雷达系统在长范围内检测物体的能力是由于它们通过的介质对无线电波的吸收较弱。雷达系统依赖于他们自己的传输,而不是自然光或对象发射的波,通常是为了避免检测到某些对象,除非需要进行预期的检测。雷达技术使用人工无线电波照亮物体,尽管在数字信号处理和噪声水平提取方面具有高科技功能,但该过程使人眼或相机看不见。相反,LiDAR(光检测和范围)系统利用从激光器来测量目标的距离和特性的光脉冲,其应用涵盖了各个领域,例如地质和遥感。孔镜或梁分离器用于收集返回信号。1。与雷达不同,Lidar不使用微波或无线电波,从而与传统的雷达技术不同。它在大气研究,气象学甚至月球着陆任务中的使用都证明了其在不同地区的潜力。雷达和激光雷达系统之间的选择取决于特定要求,例如要检测到的对象的类型,环境条件和技术能力。与较短的红外激光器不同,机载的地形图映射激光雷达通常使用1064 nm二极管泵式YAG激光器,而测深的系统则使用532 nm的频率加倍激光器,因为后者能够以较少的衰减渗透水穿透水。图像开发的速度也受到系统中的扫描速率的影响,可以通过各种选项(例如双振荡平面镜或与多边形镜的组合)实现。固态照片探测器(例如硅雪崩光电二极管)和激光射击中的光电构皮之间的选择至关重要,接收器的敏感性是在激光雷达设计中需要平衡的另一个参数。非扫描系统(例如“ 3D门控观看激光雷达”)应用脉冲激光器和快速门控相机进行3D成像。在移动平台(例如飞机或卫星)中,需要仪器,包括全球定位系统接收器和惯性测量单元(IMU),以确定传感器的绝对位置和方向。这允许使用扫描和非扫描系统进行3D成像。每个卫星都会传输包括精确的轨道信息,一般系统健康以及所有卫星的粗糙轨道的消息。2。全球定位系统(GPS)在所有天气条件下都提供位置和时间信息,从地球上方的GPS卫星发送的准确的时序信号来计算其位置。接收器使用这些消息来确定运输时间,计算到每个卫星的距离,并使用三尾征来计算接收器的位置。然后以派生信息(例如根据位置变化计算出的方向和速度)显示此位置。在此处给出的文字Google Street View使用各种技术来捕捉全球街道的全景。专门的GPS应用程序同时使用位置和时间数据,包括用于交通信号的时机以及手机基站的同步。位置传感器(例如旋转器编码器)用于工业控制,机器人技术和其他需要精确轴旋转的应用。该系统由15个摄像头的玫瑰花结成,带有5百万像素CMOS图像传感器和自定义镜头。新一代的相机可以改善分辨率,取代了早期的相机。Google Street View显示了特殊改装的汽车的图像,但还使用替代方法来用于无法通过汽车(例如Google Trikes或Snowmobiles)进入的区域。这些车辆具有定向相机,GPS单元,激光范围扫描仪和3G/GSM/Wi-Fi天线。高质量的图像现在基于开源硬件摄像头。街道视图图像在放大地图和卫星图像后出现,可以通过将“佩格曼”图标拖到地图上的位置来访问。在交叉和交叉点处,显示了其他箭头。3。4。通过照片中的固体或损坏的线可视化相机汽车的路径,箭头指向每个方向的后续图像。人工智能软件过道COE,Pune使用控制单元。人工智能是旨在创建智能机器的计算机科学领域。智能代理人感知其环境并采取行动以最大程度地提高成功。Xeon处理器是一个多核处理器,最多8个执行核,每个核心支持两个线程。每个核心的共享指令和数据中级缓存处理实时传感器值和一般处理。两个Cortex-A9处理器处理转向和制动系统。异质计算是指使用各种计算单元(例如通用处理器或自定义加速逻辑)的电子系统。传感器数据获取:人类的感知经历了程序的运行,传感器数据采集涉及从各种传感器中收集和处理环境数据,包括LIDARS,CAMERAS和GPS/INS。JAUS互操作通信:无人系统的联合体系结构是由美国国防部开发的,为无人系统创建开放的建筑,Labview在其开发中起着至关重要的作用。驱车系统过热COE,浦那19 25。使用机电执行器和人机界面用电子系统替换传统的机械控制系统,从而消除了诸如转向柱和泵等组件。5。早期的副驾驶系统将演变成汽车运动员。算法:一种算法用于接收和解释从领导者车辆的位置数据,模仿其导航属性以准确遵循设定路径,并利用诸如面包屑位置和立方样条拟合的技术。逐线技术6.乘线技术驱动驱动线将技术与人工智能和算法相结合,仅控制三个驾驶零件:转向,制动和油门,取代传统的机械系统。通过电线技术进行电子驱动器及其应用的电子驱动技术涉及从车辆控制系统中消除传统的机械组件,并用电子传感器,计算机和执行器代替它们。DBW的优点包括通过计算机控制的干预来提高安全性,例如电子稳定控制(ESC),自适应巡航控制和车道辅助系统。此外,DBW提供的设计灵活性扩大了车辆定制选项的数量。但是,由于更高的复杂性,开发成本和安全性所需的冗余要素,实施DBW系统的成本可能会更高。另一个缺点是,制造商可能会降低某些范围内的油门灵敏度,以使车辆更容易或更安全。电子动力转向(EPS)是通过电线技术对驱动器进行的常见应用,该技术使用具有可变功率辅助的电子驱动转向系统。EPS系统在较低的速度下提供更多的帮助,而在较高速度下的援助则比液压系统更节能。电子控制单元(ECU)根据方向盘扭矩,位置和车辆速度等因素来计算所需的辅助功率。有四种形式的EPS:列辅助类型,小齿轮辅助类型,直接驱动类型和机架辅助类型。这些系统具有独特的优势,例如低惯性和摩擦,对各种汽车模型的适应性以及补偿单方面力量的能力。总体而言,电线技术的电子驱动器在车辆控制系统中提供了提高的安全性,灵活性和能源效率,这使其成为制造商的流行选择。在无人驾驶汽车中,使用算法和馈送到ECU的数据计算转向角度和扭矩,从而可以免提操作。6.3电线技术制动器用电子传感器和执行器代替了传统的机械制动系统,从而提供了减轻体重,较低的操作噪声和更快的反应时间等好处。但是,冗余制动系统对于安全性至关重要,在主要系统故障的情况下激活。电线技术的制动器使用雷达和激光镜输入来计算制动踏板传感器,从而使驾驶员无法施加制动器。使用电线技术的6.4节气门用电子控制代替了加速器踏板和油门之间的机械连接,并使用诸如加速器踏板位置,发动机速度和车辆速度等传感器来确定所需的油门位置。此设置提高了无缝的功率训练一致性,并促进了诸如巡航控制,牵引力控制和防止系统等功能的集成。运输官员的头等重点是流畅的流量。减少排放,燃油消耗减少,COE,Pune驾驶,带踏板位置无关,等等,辅助,空气燃料混合控制,减少排气排放。还与汽油直接注射技术,Aissms COE,Pune一起使用,许多地区正在开发许多区域,以允许人们使用它们,尤其是出租车服务,驾驶员由于各种原因而需要这份工作。当自动驾驶汽车能够执行没有额外的人的任务时,涉及人类服务的工作就会开始减少。这种现象类似于由自动驾驶汽车引起的大规模工作,这些汽车可以更有效地执行任务。自动驾驶汽车有可能彻底改变交通流量,而人类驾驶员可以选择破坏交通法律。随着自动驾驶汽车变得越来越普遍,交通拥堵将大大减少,从而使合并并退出高速公路。流量的减少将导致经济改善和平均燃油经济性的改善,以及由于其他车辆的一致性而导致的燃料消耗降低。3)燃油经济性自动驾驶汽车将消除不必要的加速和制动,以最佳的性能水平运行,以达到最佳的燃油效率。即使提高了1%的燃油效率,仅在美国就可以节省数十亿美元。通过实施自主安全系统,可以实现卓越的燃油效率。4)时间成本每天的价值在增加,自动化汽车可以为居住在繁忙城市的个人节省大量的时间。即使没有考虑货币价值,还有更多的时间进行休闲活动也会提高生活标准。降低由于流量而浪费的时间将使人们能够准时,更具动态并提高工作效率。期货距离自动驾驶汽车的过渡带来了一些好处,包括减少交通拥堵,提高燃油经济性和提高生产率。但是,它还引起了人们对设备成本,复杂的人工智能软件以及非理想道路条件对系统性能的潜在影响的担忧。demerits:1)高设备成本:使用高级技术,例如雷达,激光雷达,位置传感器,GPS模块,多核异质处理器和高分辨率摄像头很昂贵。2)复杂的AI软件:用于机器人汽车的人工智能软件的设计和实施是复杂的任务。3)多样化的道路条件:非理想的道路条件可能会影响软件做出的决策,从而可能影响系统性能。4)专业驾驶员结构的失业将大大减少许多与交通相关的问题。自动驾驶汽车可以更有效地利用道路,从而节省空间和时间。狭窄的车道将不再是一个问题,大多数交通问题将通过这项新技术的帮助最小化。研究表明,使用自动驾驶汽车,交通模式将变得更加可预测,而且问题越来越小。汽车制造商已经在高端型号中纳入了驱动程序辅助系统,这一趋势预计将继续。为了实现这一目标,需要进行广泛的研究和测试。随着智能车辆变得越来越普遍,公共部门的积极主动方法将决定何时到达这些福利。目前,存在各种技术来帮助自动驾驶汽车开发,例如GPS,自动巡航控制和巷道保持援助。这些技术可以与其他其他技术结合使用,例如基于视频的车道分析,转向和制动驱动系统以及编程控件,以创建一个完全自主的系统。主要挑战是获得公众信任,以允许计算机驾驶车辆。不会立即接受该产品,但是随着系统变得更加普遍,揭示其收益,随着时间的流逝,该产品会随着时间的流逝而获得接受。实施自动驾驶汽车将引起人们对可以执行任务的计算机代替人类的担忧。但是,社会不会立即改变;取而代之的是,随着这些车辆融入日常生活,随着时间的流逝,它将变得更加明显。2010年第11届国际控制,自动化,机器人技术和愿景国际会议(ICARCV)提出了一份名为“智能车辆导航方案”的研究论文。会议诉讼位于当年出版物的第1809-1814页。此外,2013年Kollam的T.K.M理工学院的研讨会报告探索了自动驾驶汽车的概念。A. Frome的一篇论文,“ Google Street View中的大规模隐私保护”,在2009年的第12届IEEE国际计算机视觉会议(ICCV 09)上发表了。该报告与来自浦那的Aissms Coe的研究人员合着。此外,罗尔夫·伊斯曼(Rolf Isermann)在2011年发表了《国际工程研究技术杂志》(IJERT)的第22卷。Google Street View开发的关键人物 Sebastian Thrun也是将Google的街头图像与人工智能软件相结合的先驱,以创建创新的导航系统。 他的工作为他赢得了美国国防部的重大认可和大量赠款。Sebastian Thrun也是将Google的街头图像与人工智能软件相结合的先驱,以创建创新的导航系统。他的工作为他赢得了美国国防部的重大认可和大量赠款。