实时处理:实时处理是交互式或在线处理的一个子集。例如,输入是从传感器连续、自动获取的,并立即处理以在尽可能短的时间内响应输入。系统完成响应后,会立即读取下一组输入数据进行处理。该系统不需要用户控制,它可以自动运行。每当由于某种变化而需要快速反应时,实时处理就可以采取行动,而无需用户或事先进行长时间的处理。实时处理用于飞机上的警告系统、危险区域的警报系统、防盗警报等。
我们创建了MPDM,这是世界上最可扩展,最具成本效率的自动驾驶技术,该技术可实时处理“边缘案例”。
摘要 - 先前的研究证明了端到端深度学习对机器人导航的有效性,其中控制信号直接源自原始感觉数据。但是,大多数现有的端到端导航解决方案主要基于相机。在本文中,我们介绍了Tinylidarnet,这是一种基于自动赛车的基于轻量级的2D激光雷达的端到端深度学习模型。使用Tinylidarnet的第1辆汽车在第12场比赛中获得第三名,这表明了其竞争性能。我们会系统地分析其在未经训练的轨道和实时处理的计算要求上的性能。我们发现,基于Tinylidarnet的1D卷积Neu-ral网络(CNN)的体系结构显着胜过基于多层的多层感知器(MLP)体系结构。此外,我们表明它可以在低端微控制器单元(MCUS)上实时处理。
该多功能系统可用作高度并行的 SDR、数据记录器或深度学习算法的推理引擎。嵌入式 GPU 允许 SDR 应用程序实时处理大于 200 MHz 的带宽。
• PDNN 实时处理 BGS 和 BPS 数据(1 秒),而现有 BOTDA 功能则为 1 分钟 • 增强数据可信度:将数据中的噪声传播为预测不确定性 • 优于曲线拟合和监督机器学习
摘要:机器人技术,自动驾驶,监视和更多字段依赖于对象检测,这是计算机视觉中的基本工作。由于其低延迟速度和并行处理功能,FPGA系统吸引了对实现对象检测算法的越来越兴趣,这很重要,因为实时处理变得越来越重要。这项工作提供了FPGA体系结构,优化和实时实现的对象检测的概要。建议的方法是选择一个适当的对象检测算法,例如著名的Yolo(您只看一次)或SSD(单镜头多伯克斯检测器),该对象以其速度和准确性比率而闻名。为了实现实时速度,该算法被映射到基于FPGA的硬件体系结构上,该架构利用其可重构性和并行性。基于FPGA的对象检测的重要组成部分是硬件体系结构的设计。优化数据途径,有效控制逻辑的构建以及将算法拆分为硬件友好型组件都是此过程的一部分。以最大程度地利用资源来实现最大化吞吐量的目标,使用了包括并行处理,循环展开和管道的技术。此外,对FPGA的优化需要调整算法和硬件设计,以充分利用目标FPGA设备的功能。减少延迟和增加的吞吐量需要优化数据传输,并行性和内存访问模式。修复错误,提高性能并添加新功能都需要定期维护和升级。使用FPGA的对象检测系统的另一个重要部分是它们与各种传感器或输入流集成的能力。获取用于实时处理的输入数据需要与各种传感器(例如相机和LIDAR设备)集成。由于它们的适应性,FPGA平台很容易被整合到各种应用程序情况下,这要归功于它们与不同传感器的接口。确保在FPGA上构建的对象检测系统是准确,快速且有弹性的,请使用常见数据集和现实世界情景进行验证和测试。为了确保系统实现目标性能指标,对实时处理要求进行了彻底评估。一旦测试,基于FPGA的对象检测系统就可以将其放置在预期的设置中,作为独立设备或较大嵌入式系统的组件。关键字: - FPGA,对象检测,计算机视觉,实时处理,硬件优化,并行处理,嵌入式系统。简介自动驾驶汽车,监视系统,机器人和更多字段依赖于对象检测,这是计算机视觉中的基本工作。在许多领域的智能决策依赖于实时检测和定位事物的能力。即使它们起作用,传统的对象检测方法也不能总是处理实时处理的强烈需求,尤其是在带有移动场景的复杂设置和众多项目中。在开发对象检测系统时,使用FPGA而不是CPU或GPU有很多好处。因此,为了加快对象检测算法并获得实时性能,在使用专用硬件平台(例如现场可编程式门阵列(FPGA))的使用方面一直在增加。首先,现场编程的门阵列(FPGA)非常适合并行化,这意味着可以有效地实现卷积神经网络(CNN)之类的对象识别技术
摘要。增强现实和虚拟现实(AR/VR)系统包含几个不同的传感器,包括用于手势认可的图像传感器,头姿势跟踪和瞳孔/眼睛跟踪。所有这些传感器的数据必须由主机处理器实时处理。对于未来的AR/VR系统,需要新的传感技术来满足功耗和性能的需求。当前的学生进行分辨率约300x300像素及以上的图像进行。因此,深神经网络(DNN)需要主机平台,这些平台能够通过此类输入分辨率计算DNN来实时处理它们。在这项工作中,将瞳孔检测的图像分辨率优化为100x100像素的分辨率。引入了一个微小的学生检测神经网络,可以使用ARM Cortex-M55和嵌入式机器学习(ML)Proces-sor Arm Ethos-U55处理,其性能为每秒189帧(FPS),并且检测率很高。这允许减少图像传感器和主机之间的通信功耗,以获取未来的AR/VR设备。
申请处理单元双核ARM Cortex-A72,48KB/32KB L1 $ W/ECC 1 MB L2 $ W/ECC实时处理单元双核ARM ARM Cortex-R5,32KB/32KB/32KB L1 $和256KB TCM TCM TCM W/ECC MOMIEN 256KB ON-CHIP NOMER W/ECC
ULISSES 地面站提供以下功能:• 通过 USB 准备 ULISSES 目标库以加载到机载 ULISSES 声学处理器中 • 将按照 Stanag 4283 格式化的原始 Sonobuoy 数据从 ULISSES 可移动磁盘导入地面站。地面站允许实时处理(快速时间分析)记录的 Sonobuoy 数据 • 为操作员提供一组目标库功能,以改进目标识别和分类过程。
本期特刊回顾了BCI研究的最新进展,突出了尖端的方法,新颖的应用和跨学科方法,这些方法突破了可能的界限。领先专家的贡献涉及关键主题,例如大脑信号获取,实时处理技术,机器学习算法以及BCI与新兴技术(例如人工智能和机器人技术)的集成。通过汇集不同的观点,该出版物旨在促进合作并激发这个迅速发展的领域的未来进步。