周细胞是大脑毛细血管上的细胞。令人兴奋的新证据表明,周细胞可以调节血脑屏障并扩张毛细血管以在需要时增加血流量。这两种作用对于大脑健康都至关重要,并且周细胞可能会在疾病(例如中风或阿尔茨海默病)期间出现功能障碍或死亡。我们的研究重点是周细胞中的钙信号传导,这可能对调节血流很重要。我们想知道:是什么导致了周细胞中的钙信号?这些信号会产生什么结果?这些问题对于理解周细胞生理学及其在大脑中的作用至关重要。这项工作还可能导致未来开发用于治疗用途的周细胞特异性药物。加入我们充满活力的团队的学生将有机会直接与小鼠打交道,包括小鼠处理、训练和注射。学生还将学习双光子显微镜,这是神经科学领域最新的、最先进的显微镜技术。他们将使用这款显微镜实时记录活体小鼠大脑周细胞中前所未见的钙信号的美丽影片。通过学习使用 MATLAB 和 R 等程序分析这些钙信号影片,学生还将获得宝贵的计算机技能。学生还将通过参加小组环境下的定期实验室会议来培养沟通和解决问题的能力。我们的实验室位于 Bannatyne 校区的 Apotex 中心,这是一个充满活力的社区,鼓励来自不同健康研究学科的科学家进行互动。
同时进行 EEG-fMRI 是一种强大的大脑成像多模态技术,但其在神经反馈实验中的应用受到 MRI 环境引起的 EEG 噪声的限制。神经反馈研究通常需要实时分析 EEG,但扫描仪内获取的 EEG 受到心冲击图 (BCG) 伪影的严重污染,这是一种锁定在心动周期的高振幅伪影。虽然确实存在用于去除 BCG 伪影的技术,但它们要么不适合实时、低延迟应用(例如神经反馈),要么功效有限。我们提出并验证了一种名为 EEG-LLAMAS(低延迟伪影缓解获取软件)的新型开源 BCG 去除软件,该软件调整并改进了现有的伪影去除技术,以用于低延迟实验。我们首先使用模拟在已知基本事实的数据中验证了 LLAMAS。我们发现,在恢复 EEG 波形、功率谱和慢波相位方面,LLAMAS 的表现优于目前最好的公开可用的实时 BCG 去除技术——最佳基组 (OBS)。为了确定 LLAMAS 在实践中是否有效,我们随后使用它对健康成年人进行实时 EEG-fMRI 记录,使用稳态视觉诱发电位 (SSVEP) 任务。我们发现 LLAMAS 能够实时恢复 SSVEP,并且比 OBS 更好地恢复扫描仪外收集的功率谱。我们还在实时记录期间测量了 LLAMAS 的延迟,发现它引入的延迟平均不到 50 毫秒。LLAMAS 的低延迟加上其改进的伪影减少,因此可以有效地用于 EEG-fMRI 神经反馈。该平台实现了以前难以实现的闭环实验,例如针对短时间 EEG 事件的实验,并与神经科学界公开共享。
微生物水质是水安全的组成部分,与人类健康,食品安全和生态系统服务直接相关。但是,特别是病原体数据,甚至是粪便指标数据(例如,e。大肠杆菌),稀疏而分散,它们在不同的水体(例如地下水)和不同社会经济背景(例如低收入国家和中等收入国家)中的可用性是不公平的。迫切需要评估和整理世界各地的微生物数据,以评估全球水质,水处理和健康风险的全球状况,因为时间已经过去了,需要达到可持续发展目标(SDG)6到2030年。本文的总体目的是说明建立全球稳健且有用的微生物水质数据库和财团的需求和拥护者,这将有助于实现SDG6。我们总结了有关微生物水质的可用数据和现有数据库,讨论用于生成微生物水质的新数据的方法,并确定使用微生物数据来支持决策制定的模型和分析工具。本评论确定了非洲的全局数据集(7个数据库)和区域数据集(3个数据基础),澳大利亚/新西兰(6个数据库),亚洲(3个数据库)(3个数据库),欧洲(7个数据库),北美(12个数据库)(12个数据库)和南美(1个数据库)。低收入国家和中等收入国家缺少数据。提高了实验室能力(由于COVID-19的大流行),分子工具可以鉴定潜在的污染源并直接监测病原体。应该利用这些机会来实现世界各地的可持续发展目标6。模型和分析工具可以通过对缺乏数据的地理空间和时间推论来支持微生物水质评估。一种基因组学,信息技术(IT)和数据革命正在我们身上,并为开发用于实时记录,自动化分析,标准化和微生物数据建模的软件和设备的前所未有的机会,以增强全球水质的了解。