● 业务问题框架:在此步骤中,我们基本上会找出我们试图解决的业务问题,例如,当我们试图找出供应链效率不高的原因或我们销售量下降的原因时。当利益相关者意识到业务的任何部分效率低下时,通常会与他们进行这种讨论。 ● 分析问题框架:一旦我们有了问题陈述,我们接下来需要考虑的是如何针对该业务分析问题进行分析。在这里,我们寻找需要分析的指标和具体点。 ● 数据:一旦我们根据需要分析的内容确定了问题,接下来我们需要的就是需要分析的数据。在此步骤中,我们不仅从各种数据源获取数据,而且还清理数据;如果原始数据已损坏或具有错误值,我们会消除这些问题并将数据转换为可用形式。 ● 方法选择和模型构建:一旦数据准备好,棘手的部分就开始了。在此阶段,我们需要确定必须使用哪些方法以及哪些指标是关键的。如果需要,团队必须构建自定义模型,以找出适合各自操作的特定方法。很多时候,我们拥有的数据类型也决定了可用于进行业务分析的方法。大多数组织会制作多个模型,并根据确定的关键指标进行比较。● 部署:在选择模型和分析解决方案数据的统计方法后,我们需要做的下一件事是在实时场景中测试解决方案。为此,我们在数据上部署模型并寻找不同类型的见解。根据指标和数据亮点,我们需要决定解决问题的最佳策略并有效实施解决方案。即使在业务分析的这个阶段,我们也会将预期输出与实时输出进行比较。稍后,基于此,我们将决定是否需要重申和修改解决方案,或者是否可以继续实施解决方案。
摘要目的:用脑部计算机界面系统对运动皮层激活进行神经反馈训练可以增强中风患者的恢复。在这里,我们提出了一种新方法,该方法训练与运动性能相关的静止状态功能连接,而不是与运动相关的激活。方法:使用神经反馈和源功能连通性分析和视觉反馈,将十个健康受试者和一名中风患者在其手运动区域和其他大脑之间受过训练的α波段连贯性。结果:十分之一的健康受试者中有7个能够在一次疗程中增加手运动皮层和其他大脑其他大脑之间的α波段连贯性。慢性中风的患者学会了增强其受影响的原发性运动皮层的α波段连贯性,该病神经皮层在一个月内应用了一个月。连贯性在靶向运动皮层和α频率中特别增加。这种增加与中风后运动功能的临床有意义且持久的改善有关。结论:这些结果提供了概念证明,即对α波段连贯性的神经反馈训练是可行的,并且在行为上是有用的。意义:该研究提供了证据表明α波段在运动学习中的作用,并可能导致新的康复策略。1简介大脑界面(BCI)的技术可以监测大脑活动和生成有关活动模式特定变化的实时输出。这特别显示了有关感觉运动节奏(SMR)的表明。记录的受试者会收到有关与他/她的努力相关的神经活动的反馈,因此可以学会自愿调节大脑活动(Kamiya,1969)。SMR对应于α和β频率(〜8-30 Hz)中感觉运动皮层中神经元基的活性,这被真实或想象中的运动抑制(Arroyo等,1993; Pfurtscheller等人,2006年)。人类自愿调节SMR的能力导致BCI的发展用于运动替代,即控制假体和机器人设备(Galan等,2008; McFarland等,2008)。BCI技术的最新应用包括通过反馈训练大脑模式。在神经居住中,神经反馈的兴趣主要在于它可能改善脑部病变患者恢复的潜力(Birbaumer等,2007; Daly等,2008)。运动康复的神经反馈主要旨在训练SMR调节(Buch等,2008; Broetz等,2010; Caria等,2011; Ramos-Murguiarlday等,2013),因此可以看作是对运动成像训练的支持(Mattia等人(Mattia等,2012)。